
Modicon M340 with Unity Pro

35012430 12/2015
35
01

24
30

.0
9

www.schneider-electric.com

Modicon M340 with
Unity Pro
Serial Link
User Manual

12/2015

The information provided in this documentation contains general descriptions and/or technical
characteristics of the performance of the products contained herein. This documentation is not
intended as a substitute for and is not to be used for determining suitability or reliability of these
products for specific user applications. It is the duty of any such user or integrator to perform the
appropriate and complete risk analysis, evaluation and testing of the products with respect to the
relevant specific application or use thereof. Neither Schneider Electric nor any of its affiliates or
subsidiaries shall be responsible or liable for misuse of the information contained herein. If you
have any suggestions for improvements or amendments or have found errors in this publication,
please notify us.

No part of this document may be reproduced in any form or by any means, electronic or
mechanical, including photocopying, without express written permission of Schneider Electric.

All pertinent state, regional, and local safety regulations must be observed when installing and
using this product. For reasons of safety and to help ensure compliance with documented system
data, only the manufacturer should perform repairs to components.

When devices are used for applications with technical safety requirements, the relevant
instructions must be followed.

Failure to use Schneider Electric software or approved software with our hardware products may
result in injury, harm, or improper operating results.

Failure to observe this information can result in injury or equipment damage.

© 2015 Schneider Electric. All rights reserved.
2 35012430 12/2015

Table of Contents
Safety Information . 9
About the Book. 11

Part I Introduction to Modbus Serial and Character
Mode Communications . 13

Chapter 1 Introduction to Modbus Serial and Character Mode
Communications . 15
Introduction to Modbus Serial and Character Mode Communications 15

Part II Hardware Installation for Modbus Serial and
Character Mode Communications 17

Chapter 2 Introduction to Serial Communications 19
2.1 Serial Link on the BMX P34 1000/2000/2010/20102/2020 Processors 20

Presentation of the Serial Link on the
BMX P34 1000/2000/2010/20102/2020 Processors. 20

2.2 2 RS-485/232 ports module BMX NOM 0200 25
Presentation of the BMX NOM 0200 2 RS-485/232 Ports Module . . . 26
Modicon M340H (Hardened) Equipment . 32
Grounding of Installed Modules. 33
Installation of the Module BMX NOM 0200 . 35
BMX NOM 0200 Wiring Considerations . 37

Chapter 3 Serial Communication Architectures 39
3.1 Serial Communication Architectures for

BMX P34 1000/2000/2010/20102/2020 processors 40
Modbus Line Termination and Polarization (RS485). 41
Connecting Modbus Devices (RS485) . 43
Connecting Data Terminal Equipment (DTE) (RS232) 46
Connecting Data Circuit-terminating Equipment (DCE) (RS232) 48

3.2 Serial Communication Architectures for BMX NOM 0200 50
Modbus Line Termination and Polarization (RS485). 51
Connecting Modbus Devices (RS485) . 53
Connecting Data Terminal Equipment (DTE) (RS232) 55
Connecting Data Circuit-terminating Equipment (DCE) (RS232) 57

3.3 Cabling . 59
Cabling . 59
35012430 12/2015 3

Part III Software Implementation of Modbus Serial and
Character Mode Communications 63

Chapter 4 Installation Methodology. 65
Introduction to the Installation Phase . 65

Chapter 5 Modbus Serial Communication for
BMX P34 1000/2000/2010/20102/2020 Processors . . . 69

5.1 Generalities . 70
About Modbus Serial . 71
Performance. 72
How to Access the Serial Link Parameters . 74

5.2 Modbus Serial Communication Configuration 77
Modbus Serial Communication Configuration Screen 78
Accessible Modbus Functions . 81
Default Values for Modbus Serial Communication Parameters 82
Application-linked Modbus Parameters . 83
Transmission-linked Modbus Parameters . 85
Signal and Physical Line Parameters in Modbus. 87

5.3 Modbus Serial Communication Programming 89
Services Supported by a Modbus Link Master Processor 90
Services Supported by a Modbus Link Slave Processor 98

5.4 Debugging Modbus Serial Communication . 100
Modbus Serial Communication Debug Screen 100

Chapter 6 Character Mode Communication for
BMX P34 1000/2000/2010/20102/2020 Processors . . . 103

6.1 Generalities . 104
About Character Mode Communication . 105
Performance. 106

6.2 Character Mode Communication Configuration 108
Character Mode Communication Configuration Screen. 109
Accessible Functions in Character Mode. 112
Default Values for Character Mode Communication Parameters 113
Message End Detection Parameters in Character Mode. 114
Transmission Parameters in Character Mode 116
Signal and Physical Line Parameters in Character Mode 118

6.3 Character Mode Communication Programming. 121
Character Mode Communication Functions. 121

6.4 Debugging Character Mode communication . 128
Character Mode Communication Debug Screen 128
4 35012430 12/2015

Chapter 7 Modbus Serial Communication for BMX NOM 0200 . . 131
7.1 Generalities . 132

About Modbus Serial . 133
Performance . 134
How to Access the Serial Link Parameters . 136

7.2 Modbus Serial Communication Configuration 139
Modbus Serial Communication Configuration Screen in a Modicon
M340 Local Rack. 140
BMX NOM 0200 Modbus Serial Communication Configuration Screen
in X80 Drop . 143
Accessible Modbus Functions . 146
Default Values for Modbus Serial Communication Parameters 147
Application-linked Modbus Parameters . 148
Transmission-linked Modbus Parameters . 150
Signal and Physical Line Parameters in Modbus 152
How to Set the BMX NOM0200 MODBUS Slave Address Without Unity
Pro? . 154

7.3 Modbus Serial Communication Programming 156
Services Supported by a Modbus Link Master Module 157
Services Supported by a Modbus Link Slave Module 165
Detail of Modbus Expert Mode . 167

7.4 Debugging Modbus Serial Communication . 174
Modbus Serial Communication Debug Screen 174

Chapter 8 Character Mode Communication for BMX NOM 0200 . 177
8.1 Generalities . 178

About Character Mode Communication . 178
8.2 Character Mode Communication Configuration 179

BMX NOM 0200 Character Mode Communication Configuration
Screen in a Local Rack . 180
BMX NOM 0200 Character Mode Communication Configuration
Screen in X80 Drop . 183
Accessible Functions in Character Mode . 186
Default Values for Character Mode Communication Parameters 187
Message End Detection Parameters in Character Mode 188
Transmission Parameters in Character Mode 190
Signal and Physical Line Parameters in Character Mode 192

8.3 Character Mode Communication Programming 195
Character Mode Communication Functions . 196
Detail of Character Mode Expert Mode . 204
35012430 12/2015 5

8.4 Debugging Character Mode communication . 209
Character Mode Communication Debug Screen 209

Chapter 9 BMX NOM 0200 Module Diagnostics 211
9.1 BMX NOM 0200 Module Diagnostics. 212

Diagnostics of a BMX NOM 0200 Module . 213
Detailed Diagnostics by Communication Channel 215

Chapter 10 Language Objects of Modbus and Character Mode
Communications . 217

10.1 Language Objects and IODDTs of Modbus and Character Mode
Communications . 218
Introduction to the Language Objects for Modbus and Character Mode
Communications . 219
Implicit Exchange Language Objects Associated with the Application-
Specific Function . 220
Explicit Exchange Language Objects Associated with the Application-
Specific Function . 221
Management of Exchanges and Reports with Explicit Objects 223

10.2 General Language Objects and IODDTs for Communication Protocols 226
Details of IODDT Implicit Exchange Objects of Type
T_COM_STS_GEN . 227
Details of IODDT Explicit Exchange Objects of Type
T_COM_STS_GEN . 228

10.3 Language Objects and IODDTs Associated with Modbus
Communication . 230
Details concerning Explicit Exchange Language Objects for a Modbus
Function . 231
Details of the IODDTs Implicit Exchange Objects of Types
T_COM_MB_BMX and T_COM_MB_BMX_CONF_EXT 232
Details of the IODDTs Explicit Exchange Objects of Types
T_COM_MB_BMX and T_COM_MB_BMX_CONF_EXT 233
Details of language objects associated with configuration Modbus
mode . 236

10.4 Language Objects and IODDTs associated with Character Mode
Communication . 238
Details concerning Explicit Exchange Language Objects for
Communication in Character Mode . 239
Details of IODDT Implicit Exchange Objects of Type
T_COM_CHAR_BMX. 240
Details of IODDT Explicit Exchange Objects of Type
T_COM_CHAR_BMX. 241
Details of language objects associated with configuration in Character
mode . 244
6 35012430 12/2015

10.5 The IODDT Type T_GEN_MOD Applicable to All Modules. 246
Details of the Language Objects of the IODDT of Type T_GEN_MOD 246

10.6 Language Objects and Device DDTs Associated with Modbus
Communication . 248
Communication Device DDT Names. 248

Chapter 11 Dynamic Protocol Switching . 251
Changing Protocol with BMX P34 1000/2000/2010/20102/2020
Processors. 252
Changing Protocol with the BMX NOM 0200 Module 254

Part IV Quick Start: BMX NOM 0200.4. 257
Chapter 12 Overview . 259

Product Overview . 260
Architecture Overview . 261
Limitations . 263

Chapter 13 Configuration in Unity Pro. 265
Module Insertion . 266
Module Configuration Screen . 267

Part V Quick Start : Example of Serial Link
Implementation . 271

Chapter 14 Description of the Application 273
Overview of the Application . 273

Chapter 15 Installing the Application Using Unity Pro. 275
15.1 Presentation of the Solution Used . 276

The Different Steps in the Process Using Unity Pro 276
15.2 Developing the Application . 277

Creating the Project. 278
Declaration of Variables . 283
Using a Modem . 287
Procedure for Programming . 289
Programming Structure . 291
Programming . 294

Chapter 16 Starting the Application . 303
Execution of the Application in Standard Mode. 303

Glossary . 307
Index . 315
35012430 12/2015 7

8 35012430 12/2015

Safety Information
Important Information

NOTICE

Read these instructions carefully, and look at the equipment to become familiar with the device
before trying to install, operate, service, or maintain it. The following special messages may appear
throughout this documentation or on the equipment to warn of potential hazards or to call attention
to information that clarifies or simplifies a procedure.
35012430 12/2015 9

PLEASE NOTE

Electrical equipment should be installed, operated, serviced, and maintained only by qualified
personnel. No responsibility is assumed by Schneider Electric for any consequences arising out of
the use of this material.

A qualified person is one who has skills and knowledge related to the construction and operation
of electrical equipment and its installation, and has received safety training to recognize and avoid
the hazards involved.
10 35012430 12/2015

About the Book
At a Glance

Document Scope

This manual describes the principle for hardware and software implementation of character mode
and Modbus communication for BMX P34 1000/2000/2010/20102/2020 processors. This manual
also describes the hardware and software installation of BMX NOM 0200 communication modules
for Modicon M340 PLCs and X80 drops.

Validity Note

This documentation is valid for Unity Pro 10.0 or later.

Product Related Information

WARNING
UNINTENDED EQUIPMENT OPERATION

The application of this product requires expertise in the design and programming of control
systems. Only persons with such expertise should be allowed to program, install, alter, and apply
this product.

Follow all local and national safety codes and standards.

Failure to follow these instructions can result in death, serious injury, or equipment
damage.
35012430 12/2015 11

12 35012430 12/2015

Modicon M340 with Unity Pro

Introduction to Modbus Serial and Character Mode

35012430 12/2015
Introduction to Modbus Serial and Character Mode Communications

Part I
Introduction to Modbus Serial and Character Mode
Communications
35012430 12/2015 13

Introduction to Modbus Serial and Character Mode
14 35012430 12/2015

Modicon M340 with Unity Pro

Introduction

35012430 12/2015
Introduction to Modbus Serial and Character Mode Communications

Chapter 1
Introduction to Modbus Serial and Character Mode
Communications

Introduction to Modbus Serial and Character Mode Communications

General

The serial links for BMX P34 1000/2000/2010/20102/2020 processors and the BMX NOM 0200
module support two communication protocols:

 Modbus Serial
 Character Mode

Modbus Protocol

Modbus is a standard protocol with the following properties:

 Establishes client/server communication between different modules within a bus or serial link.
The client is identified by the master and the slave modules represent the servers.

 Is based on a mode of data exchange composed of requests and responses offering services
via different function codes.

 Establishes a means of exchanging frames from Modbus-type applications in two types of code:
 RTU mode
 ASCII mode

The exchange management procedure is as follows:

 Only one device may send data on the bus.
 Exchanges are managed by the master. Only the master may initiate exchanges. Slaves may

not send messages without first being invited to do so.
 In the event of an invalid exchange, the master repeats the request. The slave to which the

request is made is declared absent by the master if it does not respond within a given time scale.
 If the slave does not understand or cannot process the request, it sends an exception response

to the master. In this case, the master may or may not repeat the request.

Two types of dialogue are possible between master and slave(s):

 The master sends a request to a specific slave number and awaits its response.
 The master sends a request to all the slaves without awaiting a reply (the general broadcast

principle).
35012430 12/2015 15

Introduction
Character Mode Communication

Character mode is a point-to-point mode of data exchange between two entities. Unlike Modbus
Protocol, it does not establish hierarchically structured serial link communications or offer services
via function codes.

Character Mode is asynchronous. Each item of textual information is sent or received character by
character at irregular time intervals. The time taken by the exchanges can be determined from the
following properties:

 One or two end-of-frame characters.
 Timeout.
 Number of characters.
16 35012430 12/2015

Modicon M340 with Unity Pro

Hardware Installation for Serial Communications

35012430 12/2015
Hardware Installation for Modbus Serial and Character Mode Communications

Part II
Hardware Installation for Modbus Serial and Character
Mode Communications

In This Part

This part provides an introduction to hardware installation for Modbus serial and Character Mode
communications.

What Is in This Part?

This part contains the following chapters:

Chapter Chapter Name Page

2 Introduction to Serial Communications 19

3 Serial Communication Architectures 39
35012430 12/2015 17

Hardware Installation for Serial Communications
18 35012430 12/2015

Modicon M340 with Unity Pro

Serial Communications

35012430 12/2015
Introduction to Serial Communications

Chapter 2
Introduction to Serial Communications

Subject of this Chapter

This chapter introduces the serial communications on the BMX P34 1000/2000/2010/20102/2020
processors and on the BMX NOM 0200 module.

The table below gives a quick overview of the two possibilities for implementing serial link
communications:

What Is in This Chapter?

This chapter contains the following sections:

Using the integrated port of the CPU Using the BMX NOM 0200 communcation
module

- Limited transmission speed
- Non isolated serial lines
- Provision of power supply to terminal
equipment

- Increased number of available
communication channels
- Handling of modem specific RS232 signals
- Higher transmission speed
- Two isolated RS485 serial lines

Section Topic Page

2.1 Serial Link on the BMX P34 1000/2000/2010/20102/2020 Processors 20

2.2 2 RS-485/232 ports module BMX NOM 0200 25
35012430 12/2015 19

Serial Communications
Serial Link on the BMX P34 1000/2000/2010/20102/2020 Processors

Section 2.1
Serial Link on the BMX P34 1000/2000/2010/20102/2020
Processors

Presentation of the Serial Link on the BMX P34 1000/2000/2010/20102/2020
Processors.

General

The following processors have an integrated communication channel dedicated to serial
communications, and enable communication via serial link:
 BMX P34 1000/2000/2020,
 BMX P34 2010/20102.
20 35012430 12/2015

Serial Communications
Processors Introduction

The illustration below shows the physical characteristics of the
BMX P34 1000/2000/2010/20102/2020 processors:

These processors are composed of the following elements:

Address Description

1 Processor status LEDs on the front

2 Integrated channel (channel 0) dedicated to the serial link.

3 Serial port identification ring (black)
35012430 12/2015 21

Serial Communications
Visual Diagnostic of Serial Communication

The status of the serial communication is indicated by a yellow SER COM LED on the front of these
processors:
 LED flashing: Serial communication is in progress.
 LED off: Serial communication is not in progress.

Serial Port Introduction

The illustration below shows the RJ45 serial port:

The RJ45 connector has eight pins. The pins used vary according to the physical link used.

The pins used by the RS232 serial link are:
 Pin 1: RXD signal
 Pin 2: TXD signal
 Pin 3: RTS signal
 Pin 6: CTS signal
 Pin 8: Potential serial link grounding (0 V)

The pins used by the RS485 serial link are:
 Pin 4: D1 signal
 Pin 5: D0 signal

Pin 7 is used solely to supply power to human-machine interfaces or small devices via the serial
link cable:
 Pin 7: Serial link power supply: 5 VDC/190 mA
22 35012430 12/2015

Serial Communications
Detailed characteristics

DC characteristics:
 Maximum stabilized power consumption: 190 mA,
 Minimum voltage on CPU connector for 190 mA: 4.9 V,
 Maximum voltage on CPU connector for 190 mA: 5.25 V,
 Maximum voltage on CPU connector with no load: 5.5 V.

AC characteristics:
 Capacitor charge: (on 5 V)
 Maximum 1 F ceramic capacitor
 10 F tantalum

 Pump charge startup: (on 5 V)
 4 x 1 F ceramic capacitor
 2 x 10 F tantalum

NOTE: The four-wire RS232, the two-wire RS485 and the two-wire RS485 with power supply all
use the same female RJ45 connector. Only the signal cabling is different.

Electrical Line Characteristics

The RS232 and the RS485 lines are not isolated.

In case of non equipotential earth between connected equipments (cables equal or longer than
30 m), it is necessary to use a TWDXCAISO isolator module in RS485 mode.

The RS485 line polarisation is integrated into the PLC and automatically enabled or disabled by
the system according to the configuration chosen in the Unity Pro screen:
 Modbus master : The line polarisation is enabled.
 Modbus slave : The line polarization is disabled.
 Character mode : The line polarization is disabled.

The polarisation is not affected by dynamic protocol switching. The polarization resistors’ value is
560 ohms.

In RS232 mode, no polarization is required.

There is no built-in line termination.
35012430 12/2015 23

Serial Communications
Channel Specifications

The channel of these processors includes:
 One non-isolated RS485 physical interface,
 One non-isolated RS232 physical interface,
 Modbus Serial (ASCII and RTU) and Character Mode communication types.

The link specifications for the two protocols are:

Modbus Serial /
RS485

Modbus Serial /
RS232

Character Mode /
RS485

Character Mode /
RS232

Type Master/Slave Master/Slave Half Duplex Full Duplex

Flow 19200 bauds.
Parameters can
be set from
300 bauds to
38400 bauds.

19200 bauds.
Parameters can
be set from
300 bauds to
38400 bauds.

9600 bauds.
Parameters can be
set from
300 bauds to
38400 bauds.

9600 bauds.
Parameters can
be set from
300 bauds to
38400 bauds

Number of
devices

32 32 _ _

Authorized
slave
addresses

1 to 247 1 to 247 _ _

Max. length
of Bus
without
branching

1000 m (15 m
with Branching)

15 m 1000 m (15 m with
Branching)

15 m

Message
Size

Modbus Serial:
 RTU:

256 bytes
(252 bytes of
data)

 ASCII:
513 bytes
(2x252 bytes
of data)

Modbus Serial:
 RTU:

256 bytes
(252 bytes of
data)

 ASCII:
513 bytes
(2x252 bytes
of data)

1024 bytes 1024 bytes

Utilities Read words/bits.
Write words/bits.
Diagnostics.

Read words/bits.
Write words/bits.
Diagnostics.

Send character
strings.
Receive character
strings.

Send character
strings.
Receive character
strings.
24 35012430 12/2015

Serial Communications
2 RS-485/232 ports module BMX NOM 0200

Section 2.2
2 RS-485/232 ports module BMX NOM 0200

Subject of this Section

This section introduces the serial communications on the BMX NOM 0200 module.

What Is in This Section?

This section contains the following topics:

Topic Page

Presentation of the BMX NOM 0200 2 RS-485/232 Ports Module 26

Modicon M340H (Hardened) Equipment 32

Grounding of Installed Modules 33

Installation of the Module BMX NOM 0200 35

BMX NOM 0200 Wiring Considerations 37
35012430 12/2015 25

Serial Communications
Presentation of the BMX NOM 0200 2 RS-485/232 Ports Module

General

The BMX NOM 0200 and BMX NOM 0200H (see page 32) serial link modules are 2-way
asynchronous serial line modules supporting Modbus Serial (master or slave) and Character Mode
communications.

The BMX NOM 0200 is a simple-format, dedicated module, which can be installed on a
Modicon M340 station rack.

NOTE: At the temperature extremes (-25... 0ºC and 60... 70ºC) (-13...32ºF) and (140...158ºF), the
BMX NOM 0200H operating characteristics are the same as the BMX NOM 0200 characteristics
within its (0…60ºC)(32...140ºF) temperature range.

Module introduction

The illustration below shows the physical characteristics of the BMX NOM 0200 module:

RUN
ERR

COM0

COM1

BMX NOM 0200

RUN
ERR

DL

COM1

COM0
26 35012430 12/2015

Serial Communications
This BMX NOM 0200 module is composed of the elements in the following table:

NOTE: In some operating modes, LEDs can indicate more specific information (see page 27).

Visual Diagnostics

Five LEDs are located on the front panel of the BMX NOM 0200 module. They display information
about the module operating status and about the communication status of the built-in serial link.

LED Display:

 RUN = The module is powered and well configured.
 ERR = The module has detected an error and cannot function correctly.
 DL = The firmware is being downloaded.
 SER COM0 = Communication detected on port 0 or 1 (channel 0).
 SER COM1 = Communication detected on port 2 (channel 1).

Key Description

1 Five indicator LEDs on the front of the module:
 RUN and ERR show the module’s status,
 SER COM0 displays the traffic status on the port 0 or 1 (channel 0),
 SER COM1 displays the traffic status on the port 2 (channel 1),
 DL shows the firmware download status.

2 Integrated channel (channel 0) dedicated to the serial link with 2 serial ports:
RS232 (port 0) and RS485 (port 1).
Note: Only one port can be active at a time.

3 Integrated channel (channel 1) dedicated to the serial link with 1 serial port:
RS485 (port 2).

RUN ERR DL

SER COM0

SER COM1
35012430 12/2015 27

Serial Communications
LED meaning:
 Each LED can be in one of these states:
 1 = On
 0 = Off
 B = Blinking

 During module startup all LEDs are powered ON and OFF, this verifies that the LEDs are
functioning correctly.

RUN ERR SER COM0 SER COM1 DL Diagnose

0 _ _ _ _ The module is not powered or non-
operational.

0 B _ _ _ The module is not configured.

1 1 _ _ _ The module improperly operative.

1 1 1 0 _ The module has detected a problem on
the channel 0.

1 1 1 B _ The module has detected a problem on
the channel 0, the channel 1 is
exchanging data.

1 1 0 1 _ The module has detected a problem on
the channel 1.

1 1 B 1 _ The module has detected a problem on
the channel 1, the channel 0 is
exchanging data.

1 0 B _ _ The channel 0 is exchanging data.

1 0 _ B _ The channel 1 is exchanging data.

B B _ _ 0 The CPU is absent.

B B B B _ The module is performing self tests.

_ _ _ _ B A module firmware is being
downloaded.

_ _ _ _ 1 The firmware is uploaded; the module
must be reset.
28 35012430 12/2015

Serial Communications
Serial Ports Introduction

The illustration below shows the RJ45 serial ports on the BMX NOM 0200:

The table below shows the pin assignment for the serial port on the BMX NOM 0200:

NOTE:

 The two RS485 lines are isolated. The isolation voltage between the two serial lines 500 V and

between each isolated serial line and the backplane is up to 500V AC.
 The seven-wire RS232 and two-wire RS485 use the same female RJ45 connector. Only the

signal cabling is different.

Pin N RS485 channel 1 / port 1 or 2 RS232 channel 0 / port 0

1 _ RXD (Receive Data)

2 _ TXD (Transmit Data)

3 _ RTS (Request To Send)

4 D1 (B/B4) DTR (Data Terminal Ready)

5 D0 (A/A4) DSR (Data Set Ready)

6 _ CTS (Clear To Send)

7 _ DCD (Data Carrier Detect)

8 Potential serial link grounding (0 V) Potential serial link grounding (0 V)

1
2
3
4
5
6
7
8

1
2
3
4
5
6
7
8

RUN
ERR

COM0

COM1

BMX NOM 0200

RUN
ERR

DL

COM1

COM0
35012430 12/2015 29

Serial Communications
Channels Specifications

The channels of the BMX NOM 0200 module include:
 Two isolated RS485 Physical Interfaces,
 One non-isolated RS232 Physical Interface,
 Modbus Serial (ASCII and RTU) and Character Mode communication types.

The link specifications for the two protocols are:

Modbus Serial /
RS485

Modbus Serial /
RS232

Character Mode /
RS485

Character Mode /
RS232

Type Master/Slave Master/Slave Half Duplex Full Duplex

Flow 19200 bauds.
Parameters can
be set from
300 bauds to
57600 bauds.

19200 bauds.
Parameters can
be set from
300 bauds to
115200 bauds.

9600 bauds.
Parameters can be
set from 300 bauds
to 57600 bauds.

9600 bauds.
Parameters can
be set from
300 bauds to
115200 bauds

Number of
devices

32 32 _ _

Authorized
slave
addresses

1 to 247 1 to 247 _ _

Max. length
of Bus
without
branching

Refer to the table
below (15 m with
Branching)

15 m Refer to the table
below (15 m with
Branching

15 m

Message
Size

Modbus Serial:
 RTU:

256 bytes
(252 bytes of
data)

 ASCII:
513 bytes
(2x252 bytes
of data)

Modbus Serial:
 RTU:

256 bytes
(252 bytes of
data)

 ASCII:
513 bytes
(2x252 bytes
of data)

1024 bytes 1024 bytes

Utilities Read words/bits.
Write words/bits.
Diagnostics.

Read words/bits.
Write words/bits.
Diagnostics.

Send character
strings.
Receive character
strings.

Send character
strings.
Receive character
strings.

Hardware
Flow
Control

_ Optionally via
RTS/CTS signals.

_ Optionally via
RTS/CTS signals.
30 35012430 12/2015

Serial Communications
The table below shows the maximum RS485 cable length that can be used, according to the baud
rate chosen:

 (1): Cable shielded twisted pair AWG24 gauge (TSX CSA 100, TSX CSA 200, TSX CSA 500)
 (2): Cable category 5 or higher

Consumption of the BMX NOM 0200 Module

This table shows the consumption of BMX NOM 0200 module:

Baud Rate choice (bit/s) Length (m) Product reference

300 1000 (1)

600 1000 (1)

1200 1000 (1)

2400 1000 (1)

9600 1000 (1)

19200 600 (1)

38400 300 (1) or (2)

57600 200 (1) or (2)

Voltage Typical Current Maximum Current Typical Power
Dissipation

Maximum Power
Dissipation

24 V DC 80 mA 130 mA 1.92 W 3.12 W
35012430 12/2015 31

Serial Communications
Modicon M340H (Hardened) Equipment

M340H

The Modicon M340H (hardened) equipment is a ruggedized version of M340 equipment. It can be
used at extended temperatures (-25...70ºC) (-13...158ºF) and in harsh chemical environments.

This treatment increases the isolation capability of the circuit boards and their resistance to:
 condensation
 dusty atmospheres (conducting foreign particles)
 chemical corrosion, in particular during use in sulphurous atmospheres (oil, refinery, purification

plant and so on) or atmospheres containing halogens (chlorine and so on)

The M340H equipment, when within the standard temperature range (0...60ºC) (32...140ºF), has
the same performance characteristics as the standard M340 equipment.

At the temperature extremes (-25... 0ºC and 60... 70ºC) (-13...32ºF and 140...158ºF) the hardened
versions can have reduced power ratings that impact power calculations for Unity Pro applications.

If this equipment is operated outside the -25...70ºC (-13...158ºF) temperature range, the
equipment can operate abnormally.

Hardened equipment has a conformal coating applied to its electronic boards. This protection,
when associated with appropriate installation and maintenance, allows it to be more robust when
operating in harsh chemical environments.

CAUTION
UNINTENDED EQUIPMENT OPERATION

Do not operate M340H equipment outside of its specified temperature range.

Failure to follow these instructions can result in injury or equipment damage.
32 35012430 12/2015

Serial Communications
Grounding of Installed Modules

General

The grounding of Modicon M340 modules is crucial to avoid electric shock.

Grounding Processors and Power Supplies

DANGER
HAZARD OF ELECTRIC SHOCK, EXPLOSION OR ARC FLASH

Ensure ground connection contacts are present and not bent out of shape. If they are, do not use
the module and contact your Schneider Electric representative.

Failure to follow these instructions will result in death or serious injury.

WARNING
UNINTENDED EQUIPMENT OPERATION

Tighten the clamping screws of the modules. A break in the circuit could lead to an unexpected
behavior of the system.

Failure to follow these instructions can result in death, serious injury, or equipment
damage.
35012430 12/2015 33

Serial Communications
All Modicon M340 modules are equipped with ground connection contacts at the rear for grounding
purposes:

These contacts connect the grounding bus of the modules to the grounding bus of the rack.
34 35012430 12/2015

Serial Communications
Installation of the Module BMX NOM 0200

General

The BMX NOM 0200 module is installed in a Modicon M340 station rack and cannot use the slots
required for the power supply and the processor. This installation must conform to the rack
installation instructions.

The BMX NOM 0200 module requires the installation of a CPU with minimum OS version 02.10.
This installation must conform to the CPU installation instructions.

An RJ45 connector can then be connected to the module according to the targeted network.

NOTE: The BMX NOM 0200 module can be installed in a rack while the application is running on
the PLC.

Number of Modules

Since the number of expert channels managed by a PLC station is related to the processor
installed, the maximum number of BMX NOM 0200 modules in a station will therefore rely on:
 The number of channels configured on each BMX NOM 200 module (each channel counts as

an expert channel),
 The type and version of processor installed (see Modicon M340 Using Unity Pro, Processors,

Racks, and Power Supply Modules, Setup Manual),
 The number of expert channels already used.

When the application is built, Unity Pro checks that the limitation is not exceeded.

WARNING
UNINTENDED EQUIPMENT OPERATION

The application of this product requires expertise in the design and programming of control
systems. Only persons with such expertise should be allowed to program, install, alter, and apply
this products.

Follow all local and national safety codes and standards.

Failure to follow these instructions can result in death, serious injury, or equipment
damage.
35012430 12/2015 35

Serial Communications
Connection/ Disconnection

The BMX NOM 0200 module can be connected or disconnected while the power is on. When the
module is disconnected from the rack, its internal memory is erased. The module goes through an
initialization phase once it is reconnected to the backplane.

A NOM0200 (since V1.2) can be inserted into a rack at any free slot without have been configured.
This is very usefull to connect a PUNIT while the CPU is not configured or as an extra point of
connection. In this case the BMX NOM0200 is in default configuration.

The BMX NOM 0200 default configuration is MODBUS slave at address 248, RTU (delay between
frames = 2ms), 8bits of data, 1 stop bit, even parity, RS232 at 115200bit/s on channel 0 and RS485
at 57600bit/s on channel 1.

The address 248 is the point-to-point address to which any BMX NOM 0200 slave module
answers. This functionality aims at connecting directly to any slave module whose address is
unknown.

Firmware Update

The firmware of the BMX NOM 0200 can be updated via the PLC backplane. Firmware update is
defined in the Unity Loader, a SoCollaborative software, User Manual.
36 35012430 12/2015

Serial Communications
BMX NOM 0200 Wiring Considerations

Operational Consideration

The Link

The following situations can create a temporary disruption in the application or communications:
 The RJ45 connector is connected or disconnected when the power is on.
 Modules are re-initialized when the power is switched back on.

WARNING
UNINTENDED EQUIPMENT OPERATION

Although you can connect or disconnect the wires on the BMX NOM 0200 module and BMX P34
20x0 CPUs while the power to the BMX XBP station is on, doing so can interrupt the application
in progress.

Failure to follow these instructions can result in death, serious injury, or equipment
damage.
35012430 12/2015 37

Serial Communications
38 35012430 12/2015

Modicon M340 with Unity Pro

Introduction to Serial Communication Architectures

35012430 12/2015
Serial Communication Architectures

Chapter 3
Serial Communication Architectures

Subject of this Chapter

This chapter provides an introduction to architectures that use serial communication on the
BMX P34 1000/2000/2010/20102/2020 processors and on the BMX NOM 0200 module, as well
as cabling requirements.

What Is in This Chapter?

This chapter contains the following sections:

Section Topic Page

3.1 Serial Communication Architectures for
BMX P34 1000/2000/2010/20102/2020 processors

40

3.2 Serial Communication Architectures for BMX NOM 0200 50

3.3 Cabling 59
35012430 12/2015 39

Introduction to Serial Communication Architectures
Serial Communication Architectures for BMX P34 1000/2000/2010/20102/2020 processors

Section 3.1
Serial Communication Architectures for
BMX P34 1000/2000/2010/20102/2020 processors

Subject of this Section

This section provides an introduction to architectures that use serial communication on the
BMX P34 1000/2000/2010/20102/2020 processors, as well as cabling requirements.

What Is in This Section?

This section contains the following topics:

Topic Page

Modbus Line Termination and Polarization (RS485) 41

Connecting Modbus Devices (RS485) 43

Connecting Data Terminal Equipment (DTE) (RS232) 46

Connecting Data Circuit-terminating Equipment (DCE) (RS232) 48
40 35012430 12/2015

Introduction to Serial Communication Architectures
Modbus Line Termination and Polarization (RS485)

Overview

A multi-point Modbus network must have line termination and polarization.

Equipment connectable to this bus are:
 Other PLCs like M340, Premium, Quantum, Twido or Nano
 Schneider Automation devices like Altivar, Security module XPS, SEPAM, XBT or Momentum
 Other Modbus protocol compliant devices
 Modem, Hub

An example of multi-point Modbus network (see page 45) including a BMX P34 2010 processor
is presented in this manual.

NOTE: A point to point Modbus network can also be performed.

Electrical schema of line termination and polarization:
35012430 12/2015 41

Introduction to Serial Communication Architectures
Line Termination

Line termination is made externally: it consists of two 120 resistors and 1 nF capacitor placed at
each end of the network (VW3 A8 306 RC or VW3 A8 306 DRC).

Don’t place line termination at the end of a derivation cable.

Line Polarization

On a Modbus line, polarization is needed for an RS485 network.
 If the M340 CPU is used as a master, it is automatically driven by the system (see page 23)

so there is no need of external polarization.
 If the M340 CPU is used as a slave, the polarization must be implemented by two 450 to 650

resistors (Rp) connected on the RS485 balanced pair:
 a pull-up resistor to a 5 V voltage on the D1 circuit,
 a pull-down resistor to the common circuit on D0 circuit.
42 35012430 12/2015

Introduction to Serial Communication Architectures
Connecting Modbus Devices (RS485)

General

The following pages present two examples of Modbus devices connection and a Modbus serial link
architecture.

Connecting Modbus Devices that are Powered via the Serial Link

The illustration below shows how a BMX P34 2010 processor is connected to an XBT N200
console powered by the Modbus serial link:

The devices are configured as follows:
 The BMX P34 2010 processor is configured as slave,
 The XBT N200 human-machine interface is configured as master.

The XBT-Z9980 cable has the following properties:
 Connection: 2 male RJ45 connectors
 Wiring: 2 wires for the RS485 physical line and 2 for the serial link power supply
35012430 12/2015 43

Introduction to Serial Communication Architectures
Connecting Modbus Devices that are not Powered via the Serial Link

This architecture consists of the following elements:
 A BMX P34 2010 processor,
 An XPSMC16 safety controller.

The illustration below shows how a BMX P34 2010 processor is connected to an XPSMC16 safety
controller:

The devices are configured as follows:
 The BMX P34 2010 processor is configured as master,
 The XPSMC16 safety controller is configured as slave.

The VW3 A8 306 R30 cable has the following properties:
 Connection: 2 male RJ45 connectors
 Wiring: 2 wires for the RS485 physical line

BMX P34 2010 Processor

VW3 A8 306 R30 Cable

XPSMC16 Safety Controller

RUN ERR DL

COM0

COM1
44 35012430 12/2015

Introduction to Serial Communication Architectures
Modbus Serial Link Architecture

The Modbus serial link architecture consists of the following elements:
 A BMX P34 2010/20102 processor configured as master,
 An XPSMC16 safety controller configured as slave,
 A TWDXCAISO isolated splitter block,
 An LU9 GC3 splitter block,
 Two ATV31 drives, configured as slaves.

The diagram below represents the serial link architecture described above:

1 BMX P34 2010 processor
2 XBT-Z9980 cable
3 TWDXCAISO isolated splitter block
4 VW3 A8 306 R30 cable
5 ATV31 drive
6 XPSMC16 safety controller
7 LU9 GC3 splitter block
8 TSXCSAx00 cable
9 VW3 A8 306 R cable
35012430 12/2015 45

Introduction to Serial Communication Architectures
Connecting Data Terminal Equipment (DTE) (RS232)

General

Data terminal equipment is the term used to describe devices such as:
 Common peripherals (printer, keyboard-screen, workshop terminal, etc.),
 Specialized peripherals (barcode readers, etc.),
 PCs.

All data terminal equipments are connected to a BMX P34 1000/2000/2010/20102/2020 processor
by a serial cross cable using the RS232 physical link.

Connecting Data Terminal Equipment

The illustration below shows how a printer is connected to a BMX P34 2010 processor:

The communication protocol used is Character Mode.

NOTE: Only one item of data terminal equipment may be connected to each
BMX P34 1000/2000/2010/20102/2020 processor.
46 35012430 12/2015

Introduction to Serial Communication Architectures
RS 232 Serial Cross Cable

The TCS MCN 3M4F3C2 serial cross cable has two connectors:
 RJ45 male
 Nine-pin SUB-D female

The illustration below shows the pin assignment for a TCS MCN 3M4F3C2 serial cross cable:

Connecting Cables and Accessories

The table below shows the product references of the cables and adapters to be used according to
the serial connector used by the data terminal equipment:

Serial Connector for Data Terminal
Equipment

Wiring

Nine-pin SUB-D male connector TCS MCN 3M4F3C2 cable

25-pin SUB-D male connector TCS MCN 3M4F3C2 cable
 TSX CTC 07 adapter

25-pin SUB-D female connector TCS MCN 3M4F3C2 cable
 TSX CTC 10 adapter
35012430 12/2015 47

Introduction to Serial Communication Architectures
Connecting Data Circuit-terminating Equipment (DCE) (RS232)

General

Data Circuit-terminating Equipment (DCE) is the term used to describe devices such as modems.

For a DCE type device, the RTS and CTS pins are connected directly (not crossed).

All data circuit-terminating equipments are connected to a BMX P34 1000/2000/2010/20102/2020
processor by a serial direct cable using an RS232 physical link.

NOTE: The differences between DCE and DTE connections are largely in the plugs and the signal
direction of the pins (input or output). For example, a desktop PC is termed as a DTE device while
a modem is termed as a DCE device.

Modem Characteristics

M340 CPUs work with most modems on the market. To connect a modem to the serial port of a
BMX P34 1000/2000/2010/20102/2020 processor, the modem must have the following
characteristics:
 Support 10 or 11 bits per character if the terminal port is used in Modbus Serial:
 7 or 8 data bits
 1 or 2 stop bits
 Odd, even or no parity

 Operate without a data carrier check.

Connecting Data Circuit-terminating Equipment

The illustration below shows how a modem is connected to a BMX P34 2010 processor:

NOTE: In Modbus Serial, the waiting time must be between 100 and 250 ms.
48 35012430 12/2015

Introduction to Serial Communication Architectures
RS 232 Serial Direct Cable

The TCS MCN 3M4M3S2 serial direct cable has two connectors:
 RJ45 male,
 Nine-pin SUB-D male.

The illustration below shows the pin assignment for a TCS MCN 3M4M3S2 serial direct cable:

Connecting Cables and Accessories

The table below shows the product references of the cables and adapters to be used according to
the serial connector used by the Data Circuit-terminating Equipment:

Serial Connector for Data Circuit-
terminating Equipment

Wiring

Nine-pin SUB-D female connector TCS MCN 3M4M3S2 cable

25-pin SUB-D female connector TCS MCN 3M4M3S2 cable
 TSX CTC 09 adapter
35012430 12/2015 49

Introduction to Serial Communication Architectures
Serial Communication Architectures for BMX NOM 0200

Section 3.2
Serial Communication Architectures for BMX NOM 0200

Subject of this Section

This section provides an introduction to architectures that use serial communication on the
BMX NOM 0200 module, as well as cabling requirements.

What Is in This Section?

This section contains the following topics:

Topic Page

Modbus Line Termination and Polarization (RS485) 51

Connecting Modbus Devices (RS485) 53

Connecting Data Terminal Equipment (DTE) (RS232) 55

Connecting Data Circuit-terminating Equipment (DCE) (RS232) 57
50 35012430 12/2015

Introduction to Serial Communication Architectures
Modbus Line Termination and Polarization (RS485)

Overview

A multi-point Modbus network must have line termination and polarization.

Equipments connectable to this bus are:
 Other PLCs like M340, Premium, Quantum, Twido or Nano
 Schneider Automation devices like Altivar, Security module XPS, SEPAM, XBT or Momentum
 Other Modbus protocol compliant devices
 Modem, Hub

An example of multi-point Modbus network (see page 54) including a BMX NOM 0200 module
is presented in this manual.

NOTE: A point to point Modbus network can also be performed.

Electrical schema of line termination and polarization:
35012430 12/2015 51

Introduction to Serial Communication Architectures
Line Termination

Line termination is made externally: it consists of two 120 resistors and 1 nF capacitor placed at
each end of the network (VW3 A8 306RC or VW3 A8 306 DRC). Don’t place line termination at the
end of a derivation cable.

Line Polarization

On a Modbus line, polarization is needed for an RS485 network.
 If the BMX NOM 0200 module is used as a master, it is automatically driven by the system so

there is no need of external polarization.
 If the BMX NOM 0200 module is used as a slave, the polarization must be implemented by two

450 to 650 resistors (Rp) connected on the RS485 balanced pair:
 a pull-up resistor to a 5 V voltage on the D1 circuit,
 a pull-down resistor to the common circuit on D0 circuit.

NOTE:
In character mode, the line polarization is configurable under Unity Pro. It is possible to choose
betwen:
 low impedance polarization like in Modbus networks (the goal of this kind of polarization is to let

the master maintain the default state),
 high polarization impedance (the goal of this kind of polarization is to let each device contribute

to maintain the default state),
 no polarization (if an external polarization is used).
52 35012430 12/2015

Introduction to Serial Communication Architectures
Connecting Modbus Devices (RS485)

General

The following pages present an example of Modbus device connection and a Modbus serial link
architecture.

Connecting Modbus devices that are not powered via the Serial Link

The figure below shows a BMX NOM 0200 module connected to an ATV31drive:

The devices are configured as follows:
 A BMX P34 2010 processor,
 A BMX NOM 0200 module configured as master,
 An ATV31 drive configured as slave.

The VW3 A8 306 R30 cable has the following properties:
 Connection: 2 male RJ45 connectors
 Wiring: 2 wires for the RS485 physical line

00 01 02 03 04 05 06 07
08 09 10 11 12 13 14 15
16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31

. RUN . ERR . I/O .
00 01 02 03 04 05 06 07
08 09 10 11 12 13 14 15
16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31

. RUN . ERR . I/O .

DC Out
0.45A

AC In
100-240V

AC Power

24V

0V

PE

N

L

Modicon M340
CH0

CH1

AUX

0IA 0IB 0IS 0IE 0IP 0IC 0QC 0Q1

1IA 1IB 1IS 1IE 1IP 1IC 1Q0 1Q1

. RUN . ERR . I/O .

CANopen

Ethernet

Eth MAC Adress:
00-80-F4-02-E4-DB

BMX P34 2010 Processor

BMX NOM 0200
VW3 A8 306 R30
Cable

RUN ERR DL

COM0

COM1

ATV31-V1_1
35012430 12/2015 53

Introduction to Serial Communication Architectures
Modbus Serial Link Architecture

The Modbus serial link architecture consists of the following elements:
 A BMX P34 2010 processor,
 A BMX NOM 0200 module configured as master,
 A TWDXCAISO isolated splitter block,
 An LU9 GC3 splitter block,
 Two ATV31 drives configured as slaves.

The illustration below represents the serial link architecture described above:

1 BMX P34 2010 processor
2 VW3 A8 306 R30 cable
3 ATV31 drive
4 LU9 GC3 splitter block
5 VW3 A8 306 R cable
6 BMX NOM 0200 module

ATV31-V1_1

00 01 02 03 04 05 06 07
08 09 10 11 12 13 14 15
16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31

. RUN . ERR . I/O .
00 01 02 03 04 05 06 07
08 09 10 11 12 13 14 15
16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31

. RUN . ERR . I/O .

DC Out
0.45A

AC In
100-240V

AC Power

24V

0V

PE

N

L

Modicon M340

CANopen

Ethernet

Eth MAC Adress:
00-80-F4-02-E4-DB

1

2

3

2

5
4

6

RUN ERR DL

COM0

COM1
54 35012430 12/2015

Introduction to Serial Communication Architectures
Connecting Data Terminal Equipment (DTE) (RS232)

General

Data terminal equipment is the term used to describe devices such as:
 Common peripherals (printer, keyboard-screen, workshop terminal, etc.)
 Specialized peripherals (barcode readers, etc.)
 PCs

For a DTE type device, the RTS and CTS pins are crossed.

All data terminal equipment is connected to a BMX NOM 0200 module by a serial cross cable using
the RS232 physical link.

Connecting Data Terminal Equipment

The figure below shows a printer connected to a BMX NOM 0200 module:

The communication protocol used is Character Mode.

NOTE: Only one item of data terminal equipment may be connected to the BMX NOM 0200
module.

00 01 02 03 04 05 06 07
08 09 10 11 12 13 14 15
16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31

. RUN . ERR . I/O .
00 01 02 03 04 05 06 07
08 09 10 11 12 13 14 15
16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31

. RUN . ERR . I/O .

DC Out
0.45A

AC In
100-240V

AC Power

24V

0V

PE

N

L

Modicon M340
CH0

CH1

AUX

0IA 0IB 0IS 0IE 0IP 0IC 0QC 0Q1

1IA 1IB 1IS 1IE 1IP 1IC 1Q0 1Q1

. RUN . ERR . I/O .

CANopen

Ethernet

Eth MAC Adress:
00-80-F4-02-E4-DB

BMX P34 2010 Processor

BMX NOM 0200

TCS MCN 3M4F3C2
Cable

RUN ERR DL

COM0

COM1
35012430 12/2015 55

Introduction to Serial Communication Architectures
RS 232 Serial Cross Cable

The TCS MCN 3M4F3C2 serial cross cable has two connectors:
 RJ45 male,
 9-pin SUB-D female.

The figure below shows the pin assignment for a TCS MCN 3M4F3C2 serial cross cable:

Connecting Cables and Accessories

The table below shows the product references of the cables and adapters to be used according to
the serial connector used by the data terminal equipment:

Serial Connector for Data Terminal
Equipment

Wiring

9-pin SUB-D male connector TCS MCN 3M4F3C2 cable

25-pin SUB-D male connector TCS MCN 3M4F3C2 cable
 TSX CTC 07 adapter

25-pin SUB-D female connector TCS MCN 3M4F3C2 cable
 TSX CTC 10 adapter
56 35012430 12/2015

Introduction to Serial Communication Architectures
Connecting Data Circuit-terminating Equipment (DCE) (RS232)

General

Data Circuit-terminating Equipment (DCE) is the term used to describe devices such as modems.

For a DCE type device, the RTS and CTS pins are connected directly (not crossed).

All data circuit-terminating equipments are connected to a BMX NOM 0200 module by a serial
direct cable using an RS232 physical link.

NOTE: The differences between DCE and DTE connections are largely in the plugs and the signal
direction of the pins (input or output). For example, a desktop PC is termed as a DTE device while
a modem is termed as a DCE device.

Modem Characteristics

The BMX NOM 0200 module works with most modems on the market. To connect a modem to the
serial port of a BMX NOM 0200 module, the modem must have the following characteristics:

 Support 10 or 11 bits per character if the terminal port is used in Modbus Serial:
 7 or 8 data bits
 1 or 2 stop bits
 Odd, even or no parity

 Operate without a data carrier check.

CTS, DTR, DSR and DCD signals can be managed by the application.

Connecting Data Circuit-terminating Equipment

The figure below shows a modem connected to a BMX NOM 0200 module:

The modem connection needs specific modem cable to work.

00 01 02 03 04 05 06 07
08 09 10 11 12 13 14 15
16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31

. RUN . ERR . I/O .
00 01 02 03 04 05 06 07
08 09 10 11 12 13 14 15
16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31

. RUN . ERR . I/O .

DC Out
0.45A

AC In
100-240V

AC Power

24V

0V

PE

N

L

Modicon M340
CH0

CH1

AUX

0IA 0IB 0IS 0IE 0IP 0IC 0QC 0Q1

1IA 1IB 1IS 1IE 1IP 1IC 1Q0 1Q1

. RUN . ERR . I/O .

CANopen

Ethernet

Eth MAC Adress:
00-80-F4-02-E4-DB

BMX P34 2010 Processor

BMX NOM 0200

SR2 MOD 01
Modem

TCS XCN 3M4F3S4
Cable

STATUS
COM-M

SR2COM01
12-24 V DC

RUN ERR DL

COM0

COM1
35012430 12/2015 57

Introduction to Serial Communication Architectures
RS 232 Serial Direct Cable

Example of the TCS XCN 3M4F3S4 Cable:

The TCS XCN 3M4F3S4 serial direct cable is an 8 wires version and has two connectors:

 RJ45 male,
 9-pin SUB-D male.

The illustration below shows the pin assignment for a TCS XCN 3M4F3S4 serial direct cable:

Connecting Cables and Accessories

The table below shows the product references of the cables and adapters to be used according to
the serial connector used by the data circuit-terminating equipment:

To DTE To DCE
Male 8-pin

In

Supply

Supply

Out

Out

Out

Out

Out

Out

Out

Out

In
In

In In

In

In

Male 9-pin
D-Sub connector

< direct > or < straight trough > cable

RJ45 connector

1
2
3
4
5
6
7
8
9

Shield

1 RXD
RXDTXD
TXDRTS

RTS

DTR DTR
DSR

DSRCTS

CTS
DCD

RI

DCD

GND

GND

2
3
4
5
6
7
8

Shield

Serial Connector for Data Circuit-
terminating Equipment

Wiring

9-pin SUB-D female connector TCS MCN 3M4M3S2 cable
 TCS XCN 3M4F3S4 cable

25-pin SUB-D female connector TCS MCN 3M4M3S2 cable
 TSX CTC 09 Adapter
58 35012430 12/2015

Introduction to Serial Communication Architectures
Cabling

Section 3.3
Cabling

Cabling

General

Several cables and accessories are required in order to set up a serial link on the following
processors and module:
 BMX P34 1000,
 BMX P34 2000,
 BMX P34 2010/20102,
 BMX P34 2020, and
 BMX NOM 0200 module.

Cabling System

The figure below shows an example of Modicon M340 Modbus serial link and character mode
cabling system. The cables (see page 60) and connecting accessories (see page 61)
referenced in the figure are described in the next tables:

1

787

4

3

9

5

2 12

10

12
RS 232C

RS 485

11

6

7

9

c 24 V

Modbus serial link

3rd party
Modbus
product

Twido
Lexium 05

ATV 71

Modicon Premium Modicon Quantum ATV 31

Modbus RS 232C

Modicon M340

Magelis XBT

Advantys OTB
Preventa XPS MC
35012430 12/2015 59

Introduction to Serial Communication Architectures
Cables

The table below shows the available cables that are compatible with serial communication on these
processors and module:

Figure
Reference

Designation Length Characteristics Product reference

6 RS485 double shielded
twisted pair trunk cable

100 m Two bare ends TSX CSA 100

6 RS485 double shielded
twisted pair trunk cable

200 m Two bare ends TSX CSA 200

6 RS485 double shielded
twisted pair trunk cable

500 m Two bare ends TSX CSA 500

7 Modbus RS485 cable 0.3 m Two RJ45 male connectors VW3 A8 306 R03

7 Modbus RS485 cable 1 m Two RJ45 male connectors VW3 A8 306 R10

7 Modbus RS485 cable 3 m Two RJ45 male connectors VW3 A8 306 R30

- Modbus RS485 cable 3 m One RJ45 male connector
 One fifteen-pin SUB-D male

connector

VW3 A8 306

4 Modbus RS485 cable 0.3 m One RJ45 male connector
 One mini-DIN connector

TWD XCA RJ003

4 Modbus RS485 cable 1 m One RJ45 male connector
 One mini-DIN connector

TWD XCA RJ010

4 Modbus RS485 cable 3 m One RJ45 male connector
 One mini-DIN connector

TWD XCA RJ030

5 Modbus RS485 cable 3 m One RJ45 male connector
 One bare end

VW3 A8 306 D30

9 Modbus RS485 cable 3 m One miniature connector
 One 15-pin SUB-D connector

TSX SCP CM 4630

11 RS485 cable for
Magelis XBT display
and terminal

2.5 m One RJ45 male connector
 One 25-pin SUB-D female connector

Note: This cable is not compatible with
BMX NOM 0200 module

XBT-Z938

- RS485 cable for
devices that are
powered via the serial
link

3 m Two RJ45 male connectors
Note: This cable is not compatible with
BMX NOM 0200 module.

XBT-Z9980

- Four-wire RS232 cable
for Data Terminal
Equipment (DTE)

3 m One RJ45 male connector
 One nine-pin SUB-D female

connector

TCS MCN 3M4F3C2
60 35012430 12/2015

Introduction to Serial Communication Architectures
Connecting Accessories

The table below shows the available connecting accessories that are compatible with serial
communication on these processors and module:

- Four-wire RS232 cable
for Data Circuit-
terminating Equipment
(DCE)

3 m One RJ45 male connector
 One nine-pin SUB-D male connector

TCS MCN 3M4M3S2

- Seven-wire RS232
cable for Data Circuit-
terminating Equipment
(DCE)

3 m One RJ45 male connector
 One 9-pin SUB-D male connector

TCS XCN 3M4F3S4

Figure
Reference

Designation Length Characteristics Product reference

Figure
Reference

Designation Characteristics Product reference

1 Modbus splitter box Ten RJ45 connectors
 One screw terminal block

LU9 GC3

2 T-junction box Two RJ45 connectors
 On-board 0.3 m cable with RJ45

connector at end

VW3 A8 306 TF03

2 T-junction box Two RJ45 connectors
 On-board 1 m cable with RJ45

connector at end

VW3 A8 306 TF10

- Passive T-junction box Three screw terminal blocks
 RC line end adapter

TSX SCA 50

3 Passive 2-channel subscriber socket Two fifteen-pin SUB-D female
connectors

 Two screw terminal blocks
 RC line end adapter

TSX SCA 62

4 Isolated RS485 T-junction box One RJ45 connectors
 One screw terminal block

TWD XCA ISO

- T-junction box Three RJ45 connectors TWD XCA T3RJ

- Modbus / Bluetooth adapter One Bluetooth adapter with one
RJ45 connector

 One cordset for PowerSuite with
two RJ45 connectors

 One cordset for TwidoSuite with
one RJ45 connector and one
mini-DIN connector

 One RJ45/SUB-D male 9-pin
adpter for ATV speed drives

TWD XCA T3RJ
35012430 12/2015 61

Introduction to Serial Communication Architectures
NOTE: This list of cables and accessories is not exhaustive.

5 RS232C/RS485 line adapter without
modem signals

19.2kbit/s XGS Z24

12 Line terminator for RJ45 connector Resistance of 120

 Capacity of 1 nF

VW3 A8 306 RC

- Line terminator for screw terminal block Resistance of 120

 Capacity of 1 nF

VW3 A8 306 DRC

- Adapter for non-standard devices Two 25-pin SUB-D male
connectors

XBT ZG999

- Adapter for non-standard devices One 25-pin SUB-D male
connector

 One nine-pin SUB-D male
connector

XBT ZG909

- Adapter for data terminal equipment One nine-pin SUB-D male
connector

 One 25-pin SUB-D female
connector

TSX CTC 07

- Adapter for data terminal equipment One nine-pin SUB-D male
connector

 One 25-pin SUB-D male
connector

TSX CTC 10

- Adapter for Data Circuit-terminating
Equipment (DCE)

 One nine-pin SUB-D female
connector

 One 25-pin SUB-D male
connector

TSX CTC 09

Figure
Reference

Designation Characteristics Product reference
62 35012430 12/2015

Modicon M340 with Unity Pro

35012430 12/2015
Software Implementation of Modbus Serial and Character Mode Communications

Part III
Software Implementation of Modbus Serial and Character
Mode Communications

In This Part

This part provides an introduction to the software implementation of Modbus Serial and Character
Mode communications using Unity Pro software.

What Is in This Part?

This part contains the following chapters:

Chapter Chapter Name Page

4 Installation Methodology 65

5 Modbus Serial Communication for BMX P34 1000/2000/2010/20102/2020
Processors

69

6 Character Mode Communication for BMX P34 1000/2000/2010/20102/2020
Processors

103

7 Modbus Serial Communication for BMX NOM 0200 131

8 Character Mode Communication for BMX NOM 0200 177

9 BMX NOM 0200 Module Diagnostics 211

10 Language Objects of Modbus and Character Mode Communications 217

11 Dynamic Protocol Switching 251
35012430 12/2015 63

64 35012430 12/2015

Modicon M340 with Unity Pro

Methodology

35012430 12/2015
Installation Methodology

Chapter 4
Installation Methodology

Introduction to the Installation Phase

Introduction

The software installation of application-specific modules is carried out from the various Unity Pro
editors:
 in offline mode
 in online mode

If you do not have a processor to which you can connect, Unity Pro allows you to carry out an initial
test using a simulator. In this case, the installation is different.

Installation Phases When Using a Processor

The following table shows the various phases of installation using a processor:

Phase Description Mode

Configuration of the
processor

Processor declaration Offline

Processor’s serial port configuration

Configuration of the
module (if applicable)

Module declaration Offline

Module channel configuration

Entry of configuration parameters

Declaration of variables Declaration of the IODDT-type variables specific to the
processor / module and the project variables

Offline (1)

Association Association of IODDT variables with the configured channels
(variable editor)

Offline (1)

Programming Project programming Offline (1)

Generation Project generation (analysis and editing of links) Offline

Transfer Transferring project to PLC Online

Debug Project debugging from debug screens and animation tables Online
35012430 12/2015 65

Methodology
Installation Phases When Using a Simulator

The following table shows the various phases of installation using a simulator:

Documentation Creating a documentation file and printing the miscellaneous
information relating to the project

Online

How it Works Displaying of the miscellaneous information required to
supervise the project

Online

Legend:

(1) These phases may also be performed online.

Phase Description Mode

Phase Description Mode

Configuration of the
processor

Processor declaration Offline

Processor’s serial port configuration

Configuration of the
module (if applicable)

Module declaration Offline

Module channel configuration

Entry of configuration parameters

Declaration of variables Declaration of the IODDT-type variables specific to the
processor / module and the project variables

Offline (1)

Association Association of IODDT variables with the configured channels
(variable editor)

Offline (1)

Programming Project programming Offline (1)

Generation Project generation (analysis and editing of links) Offline

Transfer Transferring project to simulator Online

Simulation Program simulation without inputs/outputs Online

Adjustment/Debugging Project debugging from animation tables Online

Modifying the program and adjustment parameters

Legend:

(1) These phases may also be performed online.
66 35012430 12/2015

Methodology
Configuration of Processor and Module

The configuration parameters may only be accessed from the Unity Pro software.

Technical Documentation Creation

Unity Pro allows to create a project technical documentation (see Unity Pro, Operating Modes).

The general format of the printout is made of:
 A title: module part number and its position,
 A section with the module identification,
 A section per channel with all parameters of a channel.

The printout is consistent with the configuration: not significant grayed information is not printed.
35012430 12/2015 67

Methodology

68 35012430 12/2015

Modicon M340 with Unity Pro

35012430 12/2015
Modbus Serial Communication for BMX P34 1000/2000/2010/20102/2020 Processors

Chapter 5
Modbus Serial Communication for
BMX P34 1000/2000/2010/20102/2020 Processors

Subject of this Chapter

This chapter presents the software implementation process for Modbus Serial communication for
BMX P34 1000/2000/2010/20102/2020 processors.

What Is in This Chapter?

This chapter contains the following sections:

Section Topic Page

5.1 Generalities 70

5.2 Modbus Serial Communication Configuration 77

5.3 Modbus Serial Communication Programming 89

5.4 Debugging Modbus Serial Communication 100
35012430 12/2015 69

Generalities

Section 5.1
Generalities

Subject of this Section

This section presents the general points relating to Modbus Serial communication and its services.

What Is in This Section?

This section contains the following topics:

Topic Page

About Modbus Serial 71

Performance 72

How to Access the Serial Link Parameters 74
70 35012430 12/2015

About Modbus Serial

Introduction

Communicating via Modbus enables data exchange between all devices connected to the bus.
The Modbus Serial is a protocol that creates a hierarchical structure (one master and several
slaves).

The master manages all exchanges in two ways:
 The master exchanges with the slave and awaits a response.
 The master exchanges with all the slaves without waiting for a response (general broadcast).

NOTE: Be careful that two masters (on the same bus) do not send requests simultaneously
otherwise the requests are lost and each report will have a bad result which could be 16#0100
(request could not be processed) or 16#ODFF (slave is not present).

WARNING
CRITICAL DATA LOSS

Only use communication ports for non-critical data transfers.

Failure to follow these instructions can result in death, serious injury, or equipment
damage.
35012430 12/2015 71

Performance

At a Glance

The tables that follow can be used to evaluate typical Modbus communication exchange times
according to different criteria.

The results displayed correspond to the average operation period for the READ_VAR function in
milliseconds.

Exchange Time Definition

The Exchange Time is the time that passes between the creation of an exchange and the end of
that exchange. It includes the serial link communication time.

The exchange is created when the communication function call is made.

The exchange ends when one of the following events occurs:
 Data is received.
 An anomaly occurs.
 Time-out expires.

Exchange Time for One Word

The table below shows exchange times for one word of Modbus communication on a
BMX P34 2020 processor:

Exchange times are similar on the BMX P34 2020 and BMX P34 2000/2010/20102 processors,
and for the BMX P34 1000, the exchange time is 10% lower than ones.

Baud rate of communication in
bits per second

Cycle time in ms Exchange time in ms
Modbus Slave is a
BMX P34 1000 cyclic

4800 Cyclic 68

4800 10 72

4800 50 100

9600 Cyclic 35

9600 10 40

9600 50 50

19200 Cyclic 20

19200 10 27

19200 50 50

38400 Cyclic 13

38400 10 20

38400 50 50
72 35012430 12/2015

Exchange Time for 100 Words

The table below shows exchange times for 100 words of Modbus communication on a
BMX P34 2020 processor:

Exchange times are similar on the BMX P34 2020 and BMX P34 2000/2010/20102 processors,
and for the BMX P34 1000, the exchange time is 10% lower than ones.

Measurement Accuracy

All exchange times listed above come from measures with an accuracy margin of +/-10 ms.

Baud rate of communication in
bits per second

Cycle time in ms Exchange time in ms
Modbus Slave is a
BMX P34 1000 cyclic

4800 Cyclic 500

4800 10 540

4800 50 595

9600 Cyclic 280

9600 10 288

9600 50 300

19200 Cyclic 142

19200 10 149

19200 50 150

38400 Cyclic 76

38400 10 80

38400 50 100
35012430 12/2015 73

How to Access the Serial Link Parameters

At a Glance

The following pages explain how to access the serial port configuration screen for the following
processors as well as the general elements of Modbus and Character Mode link configuration and
debug screens:
 BMX P34 1000,
 BMX P34 2000,
 BMX P34 2010/20102,
 BMX P34 2020.

How to Access the Serial Link

The table below describes the procedure for accessing the serial link:

Step Action

1 In the project browser, open the following directory:Station\Configuration\0: PLC bus\0: rack
reference\0: processor reference\SerialPort.
Result: The following screen appears:
74 35012430 12/2015

2 Double-click on the Serial Port sub-directory.
Result: The confiuration screen appears:

Step Action
35012430 12/2015 75

Description of Configuration Screen

The following table shows the different elements of the configuration screen:

Address Element Function

1 Tabs The tab in the foreground indicates the current mode. Each mode can be selected using
the corresponding tab. The available modes are:
 Configuration
 Debug screen (accessible in online mode only)

2 Channel zone Enables you to:
 Choose between the serial port and channel 0 by clicking on one or the other.
 Display the following tabs by clicking on the serial port:
 "Description", which gives the characteristics of the device.
 "I/O Objects", (see Unity Pro, Operating Modes) which is used to presymbolize

the input/output objects.

 Display the following tabs by clicking on the channel:
 Configuration
 Debugging

 Display the channel name and symbol defined by the user using the variables editor.

3 General
parameters
zone

This enables you to choose the general parameters associated with the channel:
 Function: The available functions are Modbus and Character Mode. The default

configuration is with the Modbus function.
 Task: Defines the master task in which the implicit exchange objects of the channel

will be exchanged. This zone is grayed out and therefore not configurable.

4 Configuration
or debugging
zone

In configuration mode, this zone is used to configure the channel parameters. In debug
mode, it is used to debug the communication channel.
76 35012430 12/2015

Modbus Serial Communication Configuration

Section 5.2
Modbus Serial Communication Configuration

Subject of this Section

This section describes the software configuration process for Modbus Serial communication.

What Is in This Section?

This section contains the following topics:

Topic Page

Modbus Serial Communication Configuration Screen 78

Accessible Modbus Functions 81

Default Values for Modbus Serial Communication Parameters 82

Application-linked Modbus Parameters 83

Transmission-linked Modbus Parameters 85

Signal and Physical Line Parameters in Modbus 87
35012430 12/2015 77

Modbus Serial Communication Configuration Screen

General

The following pages provide an introduction to the configuration screen for Modbus serial
communication.

Access to the Configuration Screen

To access the Modbus serial communication configuration screen, open the Serial Port directory
in the project browser (see page 74).
78 35012430 12/2015

Modbus Serial Communication Configuration Screen

The figure below shows the default configuration screen for Modbus serial communication:
35012430 12/2015 79

Description

These zones are used to configure channel parameters. In online mode, these zones are
accessible. In offline mode, the zone is accessible but some parameters may not be accessible
and are grayed out.

The following table shows the different zones of the Modbus link configuration screen:

NOTE: When configuring Modbus Serial communication in Master mode, the Slave zone is grayed
out and cannot be modified and vice-versa.

Key Element Comment

1 Application
parameters
(see page 83)

These parameters are accessible via three zones:
 Type,
 Master,
 Slave.

2 Transmission
parameters
(see page 85)

These parameters are accessible via five zones:
 Transmission speed,
 Delay between frames,
 Data,
 Stop bits,
 Parity.

3 Signal and
physical line
parameters
(see page 87)

These parameters are accessible via three zones:
 Physical line,
 Signals,
 RTS/CTS delay.
80 35012430 12/2015

Accessible Modbus Functions

At a Glance

Function accessibility for configuration of the serial link of the following processors using Modbus
Serial, depends on the physical link being used:
 BMX P34 1000,
 BMX P34 2000,
 BMX P34 2010/20102,
 BMX P34 2020.

Accessible Functions

The table below shows the different functions configurable according to the type of serial link used:

X Accessible Function
- Inaccessible Function

Function RS 485 Link RS 232 Link

Master number of retries X X

Master response time X X

Slave number X X

Transmission speed X X

Delay between frames X X

Data ASCII (7 bits)
 RTU (8 bits)

 ASCII (7 bits)
 RTU (8 bits)

Stop 1 bit
 2 bits

 1 bit
 2 bits

Parity Odd
 Even
 None

 Odd
 Even
 None

RX/TX signals X X

RTS/CTS signals - X

RTS/CTS delay - X
35012430 12/2015 81

Default Values for Modbus Serial Communication Parameters

At a Glance

All Modbus Serial communication parameters have default values.

Default Values

The table below shows the default values for Modbus Serial communication parameters:

Configuration parameter Value

Mode Slave

Physical Line RS232

Slave number 1

Delay between frames 2 ms

Transmission speed 19200 bits/s

Parity Even

Data Bits RTU (8 bits)

Stop bits 1 bit
82 35012430 12/2015

Application-linked Modbus Parameters

At a Glance

After configuring the communication channel, you need to enter the application parameters.

These parameters are accessible from three configuration zones:
 The Type zone,
 The Master zone,
 The Slave zone.

The Type Zone

This configuration zone appears on the screen as shown below:

This zone enables you to select the type of Modbus Serial to be used:
 Master: When the station concerned is the master.
 Slave: When the station concerned is a slave.

The Master Zone

The configuration zone shown below is only accessible when "Master" is selected in the "Type"
zone:

This zone enables you to enter the following parameters:
 Number of retries: number of connection attempts made by the master before defining the

slave as absent.
The default value is 3.
Possible values range from 0 to 15.
A value of 0 indicates no retries by the Master.

 Answer delay: the time between the Master’s initial request and a repeated attempt if the slave
does not respond. This is the maximum time between the transmission of the last character of
the Master’s request and receipt of the first character of the request sent back by the slave.
The default value is 1 second (100*10 ms).
Possible values range from 10 ms to 10 s.

NOTE: The Answer delay of the Master must be at least equal to the longest Answer delay of the
Slaves present on the bus.
35012430 12/2015 83

The Slave Zone

The configuration zone shown below is only accessible when "Slave" is selected in the "Type"
zone:

This zone enables you to enter the processor’s slave number.

The default value is 1.

Possible values range from 1 to 247.

NOTE: In a Modbus Slave configuration, an additional address, number 248, can be used for a
point-to-point serial communication.
84 35012430 12/2015

Transmission-linked Modbus Parameters

At a Glance

After configuring the communication channel, you need to enter the transmission parameters.

These parameters are accessible from five zones:
 The Transmission Speed zone,
 The Delay Between Characters zone,
 The Data zone,
 The Stop zone,
 The Parity zone.

The Transmission Speed Zone

This configuration zone appears on the screen as shown below:

You can use it to select the transmission speed of the Modbus Serial. The selected speed has to
be consistent with the other devices. The configurable values are 300, 600, 1200, 2400, 4800,
9600, 19200 and 38400 bits per second.

The Delay Between frames Zone

This configuration zone appears on the screen as shown below:

The Delay Between Frames is the minimum time separating two frames on reception. This delay
is managed when the PLC (master or slave) is receiving messages.

NOTE: The default value depends on the selected transmission speed.

NOTE: The delay between frames should be the Default value in order to be Modbus compliant.
In case a Slave is not conform, the value can be changed and should be identical for the Master
and all Slaves on the Bus.
35012430 12/2015 85

The Data Zone

This configuration zone appears on the screen as shown below:

This zone allows you to enter the type of coding used to communicate using Modbus Serial. This
field is set according to the other devices connected on the bus. There are two configurable modes:
 RTU mode:
 The characters are coded over 8 bits.
 The end of the frame is detected when there is a silence of at least 3.5 characters.
 The integrity of the frame is checked using a word known as the CRC checksum, which is

contained within the frame.

 ASCII mode:
 The characters are coded over 7 bits.
 The beginning of the frame is detected when the ":" character is received.
 The end of the frame is detected by a carriage return and a line feed.
 The integrity of the frame is checked using a byte called the LRC checksum, which is

contained within the frame.

The Stop Zone

This configuration zone appears on the screen as shown below:

The Stop zone allows you to enter the number of stop bits used for communication. This field is set
according to the other devices. The configurable values are:
 1 bit
 2 bits

The Parity Zone

This configuration zone appears on the screen as shown below:

This zones enables you to determine whether a parity bit is added or not, as well as its type. This
field is set according to the other devices. The configurable values are:
 Even
 Odd
 None
86 35012430 12/2015

Signal and Physical Line Parameters in Modbus

At a Glance

After configuring the communication channel, you need to enter the signal and physical line
parameters.

These parameters are accessible via three zones:
 The Physical Line zone,
 The Signals zone,
 The RTS/CTS Delay zone.

The Physical Line Zone

This configuration zone appears on the screen as shown below:

In this zone, you can choose between two types of physical line for the serial port on the
BMX P34 1000/2000/2010/20102/2020 processors:
 The RS 232 line,
 The RS 485 line.

The Signals Zone

This configuration zone appears on the screen as shown below:
35012430 12/2015 87

In this zone, you can select the signals supported by the RS 232 physical line:
 RX/TX
 RX/TX + RTS/CTS DTEmode
 RX/TX + RTS/CTS DCEmode

If the RS 485 is configured, the entire zone will be grayed out and the default value is RX/TX.

NOTE: Only RX/TX and RX/TX + RTS/CTS signals are available when configuring the serial port
for BMX P34 1000/2000/2010/20102/2020 processors.

The RTS/CTS Delay Zone

This configuration zone appears on the screen as shown below:

RTS/CTS delay zone is available only when both RS232 and RX/TX+RTS/CTS check boxes are
selected. An RTS/CTS flow control algorithm is selected if the default value is 0 ms. A value
different from 0 enables an RTS/CTS modem control algorithm.

The RTS/CTS flow control algorithm (DTE <-> DTE) is different from the RTS/CTS modem control
algorithm (DTE <-> DCE) as follows:
 The RTS/CTS flow control algorithm is related to the overflow reception buffer (full duplex).
 The RTS/CTS modem control algorithm deals with the shared transmission process, e.g. a radio

modem.

RTS/CTS Flow Control Algorithm

The aim is to prevent a reception buffer overflow.

The RTS output signal of each device is connected to CTS input signal of other device. The
transmitter (M340) is authorized to transmit data when receiving the RTS input signal (e.g. another
M340) on its CTS input. This algorithm is symmetric and allows full duplex asynchronous
communication.

RTS/CTS Modem Control Algorithm

Before a request is transmitted, the sender (M340) activates the RTS signal and waits for the CTS
signal to be triggered by the modem. If the CTS is not activated after the RTS/CTS delay, the
request is discarded.
88 35012430 12/2015

Modbus Serial Communication Programming

Section 5.3
Modbus Serial Communication Programming

Subject of this Section

This section describes the programming process involved in implementing Modbus serial
communication.

What Is in This Section?

This section contains the following topics:

Topic Page

Services Supported by a Modbus Link Master Processor 90

Services Supported by a Modbus Link Slave Processor 98
35012430 12/2015 89

Services Supported by a Modbus Link Master Processor

At a Glance

When used as the master processor in a Modbus link, the following processors support several
services via the READ_VAR, WRITE_VAR and DATA_EXCH communication functions.
 BMX P34 1000,
 BMX P34 2000,
 BMX P34 2010/20102,
 BMX P34 2020.

Data Exchanges

Reading or writing of variables are carried out by adressing following requests to the targeted slave
device.

These requests use the READ_VAR ,WRITE_VAR and DATA_EXCH communication functions:

NOTE: WRITE_VAR can be used in broadcast mode (READ_VAR can’t be used in broadcast mode).
In this case, the PLC doesn’t receive a response. Sending a broadcast request resets the activity
bit and the code 16#01 (Exchange stop on timeout) is returned into the EF second management
word.

NOTE: The objects read by Modicon M340 PLC can be of the type %I and %IW.In this case,
READ_VAR function generates a Modbus request: FC 0x2 or 0x4. In a Quantum PLC, it allows
accessing the Input Status or Input Status Registers.
More generally, it is possible to send any Modbus requests to a slave device by using the
DATA_EXCH communication function.

READ_VAR, WRITE_VAR and DATA_EXCH Communication Functions

Three specific communication functions are defined for sending and receiving data via a Modbus
communication channel:
 READ_VAR: To read variables
 WRITE_VAR: To write variables
 DATA_EXCH: To send Modbus requests to another device over the selected protocol

Modbus request Function code Communication function

Read bits 16#01 or 16#02 READ_VAR

Read words 16#03 or 16#04 READ_VAR

Write bits 16#0F WRITE_VAR

Write words 16#10 WRITE_VAR

Other request all DATA_EXCH
90 35012430 12/2015

Programming Example in FBD

The diagram below represents an example of programming of the READ_VAR, WRITE_VAR and
DATA_EXCH communication functions in the FBD language:
35012430 12/2015 91

Programming Example in Ladder

The diagram below represents an example of programming of the READ_VAR, WRITE_VAR and
DATA_EXCH communication functions in the Ladder language:

Programming Example in ST

The lines of code below represent an example of programming of the READ_VAR, WRITE_VAR and
DATA_EXCH communication functions in the ST language:

READ_VAR(ADDM(’0.0.0.6’), ’MW’, 100, 10, Management_Table,
Receiving_Table);

WRITE_VAR(ADDM(’0.0.0.6’), ’%MW’, 100, 10, Data_to_write,
Management_Table);

DATA_EXCH(ADDM(’0.0.0.6’), 1, Data_to_send, Management_Table,
Received_data);
92 35012430 12/2015

Cancelling an Exchange

An exchange executed by the READ_VAR, WRITE_VAR and DATA_EXCH functions can be
cancelled with either ways of programming, which are both presented in ST language below:
 Using the CANCEL function:

IF (%MW40.0) THEN
 %MW200:=SHR(%MW40,8;)
 CANCEL(%MW200,%MW185);
END_IF;
%MW40 is the GEST parameter (management table). %MW40.0 corresponds to the activity bit of
the READ_VAR function and is set to 1 when the communication function is active. If this bit is
set to 1, the program carries out the following instructions:
 Moves the %MW40 bits one byte (8 bits) to the right and loads the byte corresponding to the

communication’s exchange number into the %MW200 word,
 Cancels the exchange whose exchange number is contained within the %MW200 word using

the CANCEL function.

 Using the communication function cancel bit:
IF (%MW40.0) THEN
 SET(%MW40.1);
 READ_VAR(ADDM(’0.0.0.6’), ’%MW’, 100, 10, %MW40:4, %MW10:10);
END_IF;
%MW40 is the GEST parameter (management table). %MW40.0 corresponds to the activity bit of
the READ_VAR function and is set to 1 when the communication function is active. If this bit is
set to 1, the program sets the %MW40.1 bit, the function cancel bit, to 1. This stops
communication of the READ_VAR function.

NOTE: When using the communication function cancel bit contained in the function exchange
management word (%MW40 in this example), the function (READ_VAR in this example) must be
called in order to activate the cancellation of the exchange.

NOTE: When using the communication function cancel bit, it is possible to cancel a communication
from an animation table. This can be done by simply setting the function cancel bit to 1 (%MW40.1
in this example) and then start again the communication function.

NOTE: This example of programming concerns the READ_VAR function, but is equally applicable
to the WRITE_VAR as well as the DATA_EXCH functions.

NOTE: The CANCEL function uses a report word for the CANCEL function (%MW185 in this example).
35012430 12/2015 93

Description of ADDM Function Parameters

The following table outlines the various parameters for the ADDM function:

Description of READ_VAR Function Parameters

The following table outlines the various parameters for the READ_VAR function:

Parameter Type Description

IN STRING Address of device on bus or serial link. The syntax
of the address is of the ‘r.m.c.node’ type. The
address is made up of the following parameters:
 r: Rack number of the processor, always = 0
 m: Slot number of the processor within the rack,

always = 0
 c: Channel number, always = 0 as the serial link

of a processor is always channel 0
 node: Number of slave to which the request is

being sent

OUT ARRAY [0..7] OF INT Array representing the address of a device. This
parameter can be used as an input parameter for
several communication functions.

Parameter Type Description

ADR ARRAY [0..7] OF INT Address of the destination entity given by the OUT
parameter of the ADDM function.

OBJ STRING Type of object to be read. The available types are
as follows:
 %M: internal bit
 %MW: internal word
 %I: external input bit
 %IW: external input word

NUM DINT Address of first object to be read.

NB INT Number of consecutive objects to be read.
94 35012430 12/2015

Description of WRITE_VAR Function Parameters

The following table outlines the various parameters of the WRITE_VAR function:

GEST ARRAY [0..3] OF INT Exchange management table consisting of the
following words:
 Rank 1 word: A word managed by the system

and consisting of two bytes:
 Most significant byte: Exchange number,
 Least significant byte: Activity bit (rank 0) and

cancel bit (rank 1).

 Rank 2 word: A word managed by the system
and consisting of two bytes:
 Most significant byte: Operation report,
 Least significant byte: Communication

report.

 Rank 3 word: A word managed by the user
which defines the maximum response time
using a time base of 100 ms.

 Rank 4 word: A word managed by the system
which defines the length of the exchange.

RECP ARRAY [n..m] OF INT Word table containing the value of the objects read.

Parameter Type Description

Parameter Type Description

ADR ARRAY [0..7] OF INT Address of the destination entity given by the OUT
parameter of the ADDM function.

OBJ STRING Type of object to be written. The available types are
as follows:
 %M: internal bit
 %MW: internal word

Note: WRITE_VAR cannot be used for %I and %IW
variables.

NUM DINT Address of first object to be written.

NB INT Number of consecutive objects to be written.

EMIS ARRAY [n..m] OF INT Word table containing the value of the objects to be
written.
35012430 12/2015 95

Description of DATA_EXCH Function Parameters

The following table outlines the various parameters of the DATA_EXCH function:

GEST ARRAY [0..3] OF INT Exchange management table consisting of the
following words:
 Rank 1 word: A word managed by the system

and consisting of two bytes:
 Most significant byte: Exchange number,
 Least significant byte: Activity bit (rank 0) and

cancel bit (rank 1).

 Rank 2 word: A word managed by the system
and consisting of two bytes:
 Most significant byte: Operation report,
 Least significant byte: Communication

report.

 Rank 3 word: A word managed by the user
which defines the maximum response time
using a time base of 100 ms.

 Rank 4 word: A word managed by the system
which defines the length of the exchange.

Parameter Type Description

Parameter Type Description

ADR ARRAY [0..7] OF INT Address of the destination entity given by the OUT
parameter of the ADDM function.

TYPE INT For Modicon M340 PLCs, the only possible value is:
1: Transmission of an EMIS array, then the PLC
waits for the reception of a RECP array.

EMIS ARRAY [n..m] OF INT Integers table to be sent to the destination device of
the request.
Note: It is imperative that the length of the data to
be sent (in bytes) be assigned to the fourth word of
the management table before launching the
function, in order for this to be correctly executed.
96 35012430 12/2015

GEST ARRAY [0..3] OF INT Exchange management table consisting of the
following words:
 Rank 1 word: A word managed by the system

and consisting of two bytes:
 Most significant byte: Exchange number,
 Least significant byte: Activity bit (rank 0) and

cancel bit (rank 1).

 Rank 2 word: A word managed by the system
and consisting of two bytes:
 Most significant byte: Operation report,
 Least significant byte: Communication

report.

 Rank 3 word: A word managed by the user
which defines the maximum response time
using a time base of 100 ms.

 Rank 4 word: A word managed by the system
which defines the length of the exchange.

RECP ARRAY [n..m] OF INT Integers table containing the data received.
Note: The size of the data received (in bytes) is
written automatically by the system in the fourth
word of the management table.

Parameter Type Description
35012430 12/2015 97

Services Supported by a Modbus Link Slave Processor

At a Glance

When used as a slave processor in a Modbus link, the following processors support several
services:
 BMX P34 1000,
 BMX P34 2000,
 BMX P34 2010/20102,
 BMX P34 2020.

Data Exchanges

A slave processor manages the following requests:

Diagnostics and Maintenance

The diagnostics and maintenance information accessible from a Modbus link is listed below:

Modbus request Function code PLC object

Read n output bits 16#01 %M

Read n input bits 16#02 %M

Read n output words 16#03 %MW

Read n input words 16#04 %MW

Write an output bit 16#05 %M

Write an output word 16#06 %MW

Write n output bits 16#0F %M

Write n output words 16#10 %MW

Designation Function code/sub-function code

Echo 16#08 / 16#00

Read the PLC diagnostic registers 16#08 / 16#02

Reset PLC diagnostic registers and counters to 0 16#08 / 16#0A

Read number of messages on the bus 16#08 / 16#0B

Read number of detected communication errors on the bus 16#08 / 16#0C

Read number of detected exception errors on the bus 16#08 / 16#0D

Read number of messages received from the slave 16#08 / 16#0E

Read number of "no responses" from the slave 16#08 / 16#0F

Read number of negative acknowledgements from the slave 16#08 / 16#10

Read number of exception responses from the slave 16#08 / 16#11

Read number of overflowing characters on the bus 16#08 / 16#12
98 35012430 12/2015

Read event counter 16#0B

Read connection event 16#0C

Read identification 16#11

Read device identification 16#2B / 16#0E

Designation Function code/sub-function code
35012430 12/2015 99

Debugging Modbus Serial Communication

Section 5.4
Debugging Modbus Serial Communication

Modbus Serial Communication Debug Screen

General

The Modbus serial communication debug screen can only be accessed in online mode.

Accessing the Debug Screen

The following table describes the procedure for accessing the debug screen for Modbus serial
communication:

Description of the Debug Screen

The debug screen is divided into two zones:
 The Type zone,
 The Counters zone.

The Type Zone

This zone looks like this:

It indicates the type of Modbus function configured (in this case, Master).

Step Action

1 Access the configuration screen for Modbus serial communication.
(see page 78)

2 Select the "Debug" tab on the screen that appears.
100 35012430 12/2015

The Counters Zone

This zone looks like this:

This zone shows the various debugging counters.

The Reset Counters button resets all the debug mode counters to zero.

Counter Operation

The Modbus serial communication debugging counters are:
 Bus message counter: This counter indicates the number of messages that the processor has

detected on the serial link. Messages with a negative CRC check result are not counted.
 Bus communication error counter: This counter indicates the number of negative CRC check

results counted by the processor. If a character error (overflow, parity error) is detected, or if the
message is less than 3 bytes long, the system that receives the data cannot perform the CRC
check. In such cases, the counter is incremented accordingly.

 Slave exception error counter: This counter indicates the number of Modbus exception errors
detected by the processor.

 Slave message counter: This counter indicates the number of messages received and
processed by the Modbus link.

 Slave "no response" counter: This counter indicates the number of messages sent by the
remote system for which it has received no response (neither a normal response, nor an
exception response). It also counts the number of messages received in broadcast mode.

 Negative slave acknowledgement counter: This counter indicates the number of messages sent
to the remote system for which it has returned a negative acknowledgement.

 Slave busy counter: This counter indicates the number of messages sent to the remote system
for which it has returned a "slave busy" exception message.

 Bus character overflow counter: This counter indicates the number of messages sent to the
processor that it is unable to acquire because of character overflow on the bus. Overflow is
caused by:
 Character-type data that are transmitted on the serial port more quickly than they can be

stored,
 A loss of data due to a hardware anomaly.

NOTE: For all counters, the count begins at the most recent restart, clear counters operation or
processor power-up.
35012430 12/2015 101

35012430 12/2015 102

Modicon M340 with Unity Pro

35012430 12/2015
Character Mode Communication for BMX P34 1000/2000/2010/20102/2020 Processors

Chapter 6
Character Mode Communication for
BMX P34 1000/2000/2010/20102/2020 Processors

Subject of this Section

This chapter presents the software implementation of communication using Character Mode for
BMX P34 1000/2000/2010/20102/2020 processors.

What Is in This Chapter?

This chapter contains the following sections:

Section Topic Page

6.1 Generalities 104

6.2 Character Mode Communication Configuration 108

6.3 Character Mode Communication Programming 121

6.4 Debugging Character Mode communication 128
35012430 12/2015 103

Generalities

Section 6.1
Generalities

Subject of this Section

This section provides an overview of the general points relating to Character Mode communication
and its services.

What Is in This Section?

This section contains the following topics:

Topic Page

About Character Mode Communication 105

Performance 106
104 35012430 12/2015

About Character Mode Communication

Introduction

Communication in Character Mode enables dialog and communication functions to be carried out
between the PLCs and the following devices:
 Regular peripherals (printer, keyboard-screen, workshop terminal, etc.),
 Specialized peripherals (barcode readers, etc.),
 Calculators (checking, production management, etc.),
 Heterogeneous devices (numerical commands, variable speed controllers, etc),
 External modem.

WARNING
CRITICAL DATA LOSS

Only use communication ports for non-critical data transfers.

Failure to follow these instructions can result in death, serious injury, or equipment
damage.
35012430 12/2015 105

Performance

At a Glance

The following tables describe typical exchange times in the Character Mode.

The results displayed correspond to the average operation period for the PRINT_CHAR function in
milliseconds.

Exchange Time Definition

The Exchange Time is the time between the creation of an exchange and the end of that exchange.
It includes the serial link communication time.

The exchange is created when the communication function call is made.

The exchange ends when one of the following events occurs:
 Reception of data
 An anomaly
 Time-out expires

Exchange Times for 80 Characters

The table below shows the exchange times for the transmission of 80 characters in Character
Mode on a BMX P34 2020 processor:

Baud rate of communication
in bits per second

Cycle time in ms Exchange times in ms

1200 10 805

1200 20 820

1200 50 850

1200 100 900

1200 255 980

4800 10 210

4800 20 220

4800 50 250

4800 100 300

4800 255 425

9600 10 110

9600 20 115

9600 50 145

9600 100 200

9600 255 305

19200 10 55
106 35012430 12/2015

The BMX P34 2000/2010/20102 processor exchange times are similar to the BMX P34 2020
processor. The BMX P34 1000 exchange times are 10% lower.

Measurement Accuracy

All exchange times listed above come from measures with an accuracy margin of +/-10 ms.

19200 20 60

19200 50 95

19200 100 100

19200 255 250
35012430 12/2015 107

Character Mode Communication Configuration

Section 6.2
Character Mode Communication Configuration

Subject of this Section

This section describes the configuration process used when implementing Character Mode
communication.

What Is in This Section?

This section contains the following topics:

Topic Page

Character Mode Communication Configuration Screen 109

Accessible Functions in Character Mode 112

Default Values for Character Mode Communication Parameters 113

Message End Detection Parameters in Character Mode 114

Transmission Parameters in Character Mode 116

Signal and Physical Line Parameters in Character Mode 118
108 35012430 12/2015

Character Mode Communication Configuration Screen

General

The following pages provide an introduction to the configuration screen for Character Mode
communication.

Accessing the Configuration Screen

The following table describes the procedure for accessing the configuration screen for Character
Mode communication:

Step Action

1 Open the Serial Port sub-directory in the project browser (see page 74).

2 Select the CHARACTER MODE LINK function on the screen that appears.
35012430 12/2015 109

Character Mode Communication Configuration Screen

The figure below shows the default configuration screen for Character Mode communication:
110 35012430 12/2015

Description

These zones are used to configure channel parameters. In the online mode, these zones are
accessible. In the offline mode, these zone are accessible but some parameters may not be
accessible and are grayed out.

The following table shows the different zones of the Character Mode communication configuration
screen:

Key Element Comment

1 Message end
detection
parameters
(see page 114)

These parameters are accessible via two zones:
 Stop on reception,
 Stop on silence.

2 Transmission
parameters
(see page 116)

These parameters are accessible via four zones:
 Transmission speed,
 Data,
 Stop bits,
 Parity.

3 Signal and
physical line
parameters
(see page 118)

These parameters are accessible via three zones:
 Physical line,
 Signals,
 RTS/CTS delay.
35012430 12/2015 111

Accessible Functions in Character Mode

At a Glance

Function accessibility for configuration of the serial link for the following processors using
Character Mode protocol depends on the physical link being used:
 BMX P34 1000,
 BMX P34 2000,
 BMX P34 2010/20102,
 BMX P34 2020.

Accessible Functions

The table below shows the different functions configurable according to the type of serial link used:

X Accessible Function
- Inaccessible Function

Function RS 485 Link RS 232 Link

Transmission speed X X

Data 7 bits
 8 bits

 7 bits
 8 bits

Stop 1 bit
 2 bits

 1 bit
 2 bits

Parity Odd
 Even
 None

 Odd
 Even
 None

Stop on Reception X X

Stop on Silence X X

RX/TX Signals X X

RTS/CTS Signals - X

RTS/CTS delay - X
112 35012430 12/2015

Default Values for Character Mode Communication Parameters

At a Glance

All Character Mode communication parameters have default values.

Default Values

The table below shows the default values for Character Mode communication parameters:

Configuration parameter Value

Physical Line RS 232

Transmission speed 9600 bits/s

Parity Odd

Data Bits 8 bits

Stop bits 1 bit
35012430 12/2015 113

Message End Detection Parameters in Character Mode

At a Glance

After configuring the communication channel, you need to enter the message end detection
parameters.

These parameters are accessible via two zones:

 The Stop on Reception Zone: stop on reception of a special character.
 The Stop on Silence Zone: stop on silence.

Conditions of Use

Selecting Stop on Silence means that Stop on Reception is deselected and vice versa.

The Stop on Reception Zone

This configuration zone appears on the screen as shown below:

A reception request can be terminated once a specific character is received.

By checking the Stop option, it is possible to configure Stop on Reception to be activated by a
specific end-of-message character:

 CR: enables you to detect the end of the message by a carriage return.
 LF: enables you to detect the end of the message by a line feed.
 Data entry field: enables you to identify an end-of-message character other than the CR or LF

characters, using a decimal value:
 Between 0 and 255 if the data is coded over 8 bits
 Between 0 and 127 if the data is coded over 7 bits

 Character included: enables you to include the end-of-message character in the reception table
of the PLC application.

It is possible to configure two end-of-reception characters. In the window below, the end of
reception of a message is detected by an LF or CR character.
114 35012430 12/2015

The Stop on Silence Zone

This configuration zone appears on the screen as shown below:

This zone enables you to detect the end of a message on reception by the absence of message
end characters over a given time.

Stop on Silence is validated by checking the Stop box. The duration of the silence (expressed in
milliseconds) is set using the data entry field.

NOTE: The available values range from 1 ms to 10000 ms and depend on the transmission speed
selected.
35012430 12/2015 115

Transmission Parameters in Character Mode

At a Glance

After configuring the communication channel, you need to enter the transmission parameters.

These parameters are accessible via four zones:
 The Transmission Speed zone,
 The Data zone,
 The Stop zone,
 The Parity zone.

The Transmission Speed Zone

This configuration zone appears on the screen as shown below:

You can use this zone to select the transmission speed of the Character Mode protocol. The
selected speed has to be consistent with the other devices. The configurable values are 300, 600,
1200; 2400, 4800, 9600, 19200 and 38400 bits per second.

The Data Zone

This configuration zone appears on the screen as shown below:

In this zone, you can specify the size of the data being exchanged on the link. The available values
are:
 7 bits
 8 bits

You are advised to adjust the number of data bits according to the remote device being used.
116 35012430 12/2015

The Stop Zone

This zone looks like this:

The Stop zone allows you to enter the number of stop bits used for communication. You are
advised to adjust the number of stop bits according to the remote device being used.

The configurable values are:
 1 bit
 2 bits

The Parity Zone

This configuration zone appears on the screen as shown below:

This zone enables you to determine whether a parity bit is added or not, as well as its type. You
are advised to adjust parity according to the remote device being used. The configurable values
are:
 Even
 Odd
 None
35012430 12/2015 117

Signal and Physical Line Parameters in Character Mode

At a Glance

After configuring the communication channel, you need to enter the signal and physical line
parameters.

These parameters are accessible via three zones:
 The Physical Line zone
 The Signals zone
 The RTS/CTS Delay zone

The Physical Line Zone

This configuration zone appears on the screen as shown below:

In this zone, you can choose between two types of physical line for the serial port on the
BMX P34 1000/2000/2010/20102/2020 processors:
 The RS 232 line
 The RS 485 line
118 35012430 12/2015

The Signals Zone

This configuration zone appears on the screen as shown below:

In this zone, you can select the signals supported by the RS 232 physical line:
 RX/TX
 RX/TX + RTS/CTS Full Duplex (DTE mode)

If the RS 485 is configured, the entire zone is grayed out and the default value is RX/TX.

NOTE: Only RX/TX and RX/TX + RTS/CTS signals are available when configuring the serial port
for BMX P34 1000/2000/2010/20102/2020 processors.

The RTS/CTS Delay Zone

This configuration zone appears on the screen as shown below:

RTS/CTS delay zone is available only when both RS232 and RX/TX+RTS/CTS check boxes are
selected.

An RTS/CTS flow control algorithm is selected: before a character string is transmitted, the system
waits for the CTS (Clear To Send) signal to be activated. This zone enables you to enter the
maximum waiting time between the two signals. When this value is timed out, the request is not
transmitted on the bus. Configurable values range from 0 s to 10 s.

NOTE: The default value is 0 ms.

NOTE: A value of 0 s indicates that the delay between the two signals has not been managed.
35012430 12/2015 119

RTS/CTS Flow Control Algorithm

The aim is to prevent a reception buffer overflow.

The RTS output signal of each device is connected to CTS input signal of the other device. The
transmitter (M340) is authorized to transmit data when receiving the RTS input signal (e.g. another
M340) on its CTS input. This algorithm is symmetric and allows full duplex asynchronous
communication.
120 35012430 12/2015

Character Mode Communication Programming

Section 6.3
Character Mode Communication Programming

Character Mode Communication Functions

Available Functions

Three specific communication functions are defined for sending and receiving data via a
communication channel in Character Mode:
 PRINT_CHAR: send a character string of a maximum of 1,024 bytes.
 INPUT_CHAR: read a character string of a maximum of 1,024 bytes.
 INPUT_BYTE (see Unity Pro, Communication, Block Library): read a byte array

of a maximum of 1,024 bytes.

The Modicon M340 PLC serial port is full duplex, so a PRINT_CHAR function can be sent even
when an INPUT_CHAR function has been sent and is still pending.

NOTE: For INPUT_CHAR function, a configured time-out is necessary if the channel is configured
without stop on silence, to acknowledge the activity bit of the function. For PRINT_CHAR function,
it is advisable but not necessary to configure a time-out.

NOTE: Contrary to the NOM0200 in RS485 Link ,the CPU save the ECHO of the Transmitted Data
into the same buffer as the Received Data .Therefore it is mandatory to clear the buffer of the CPU
after each PRINT_CHAR or before someone send Data to the channel. Else the received Data from
an INPUT_CHAR or INPUT_BYTE will not be the expected one. To clear the CPU Buffer you can
make a INPUT_CHAR with the Reset buffer activated and cancel this EF before the Timeout.
35012430 12/2015 121

Example of Programming in FBD

The diagram below represents an example of programming of the PRINT_CHAR and INPUT_CHAR
communication functions in FBD language:

Example of Programming in Ladder

The diagram below represents an example of programming of the PRINT_CHAR and INPUT_CHAR
communication functions in Ladder language:
122 35012430 12/2015

Example of Programming in ST

The lines of code below represent an example of programming of the PRINT_CHAR and
INPUT_CHAR communication functions in ST language:

PRINT_CHAR(ADDM(’0.0.0’), ‘string_to_send’, Management_Table);

INPUT_CHAR(ADDM(’0.0.0’), reset_integer_to_0, 10, Management_Table,
character_string_received);

Feature of the INPUT_CHAR Function

If the Reset input parameter is set to 1, the buffer is first reset then the processor is waiting for the
reception of data. Using this feature is advised in order to start properly a reception by removing
old data that can remain in the buffer.

Internal Mechanism of the CPU

The data received is stored in a 1024 bits cyclic buffer: once the buffer has been fully filled, the
1025th bit received overwrites the 1st bit and so on. Each buffer bit read through the INPUT CHAR
function is reset.

Two independent pointers allows access for reading and writing the data.

The below figure represents this mechanism:

x 1024

Reading pointer

Writing pointer
. . .
35012430 12/2015 123

Cancelling an Exchange

There are two ways of programming that enable an exchange executed by the PRINT_CHAR and
INPUT_CHAR functions to be cancelled. These are both presented in ST language below:
 Using the CANCEL function:

IF (%MW40.0) THEN
 %MW200:=SHR(%MW40,8;)
 CANCEL(%MW200,%MW185);
END_IF;
%MW40 is the GEST parameter (management table). %MW40.0 corresponds to the activity bit of
the PRINT_CHAR function and is set to 1 when the communication function is active. If this bit
is set to 1, the program carries out the following instructions:
 Moves the %MW40 bits one byte (8 bits) to the right and loads the byte corresponding to the

communication’s exchange number into the %MW200 word.
 Cancels the exchange whose exchange number is contained within the %MW200 word using

the CANCEL function.

 Using the communication function’s cancel bit:
IF (%MW40.0) THEN
 SET(%MW40.1);
 PRINT_CHAR(ADDM(’0.0.0’), ‘string_to_send’, %MW40:4);
END_IF;
%MW40 is the GEST parameter (management table). %MW40.0 corresponds to the activity bit of
the PRINT_CHAR function and is set to 1 when the communication function is active. If this bit
is set to 1, the program sets the %MW40.1 bit, the function cancel bit, to 1. This stops
communication of the PRINT_CHAR function.

NOTE: When using the communication function cancel bit, the function must be called in order to
enable the cancel bit contained in the function exchange management word (%MW40 in this
example).

NOTE: When using the communication function cancel bit, it is possible to cancel a communication
from an animation table. This can be done by simply setting the function cancel bit to 1 (%MW40.1
in this example).

NOTE: This example of programming concerns the PRINT_CHAR function, but is equally
applicable to the INPUT_CHAR function.

NOTE: The CANCEL function uses a report word for the CANCEL function (%MW185 in this
example).
124 35012430 12/2015

Description of ADDM Function Parameters

The following table outlines the various parameters for the ADDM function:

Description of PRINT_CHAR Function Parameters

The following table outlines the various parameters of the PRINT_CHAR function:

Parameter Type Description

IN STRING Address of device on bus or serial link. The syntax of the
address is of the ‘r.m.c.node’ type. The address is made up
of the following parameters:
 r: rack number of the destination system, always = 0.
 m: slot number of the destination system within the rack,

always = 0.
 c: channel number, always = 0 as the serial link of a

remote system is always channel 0.
 node: optional field that may be SYS or empty.

OUT ARRAY [0..7] OF INT Table showing the address of a device. This parameter can
be used as an input parameter for several communication
functions.

Parameter Type Description

ADR ARRAY [0..7] OF INT Address of the message receiving character mode channel
given by the OUT parameter of the ADDM function.

EMIS STRING Character string to be sent.
35012430 12/2015 125

Description of INPUT_CHAR Function Parameters

The following table outlines the various parameters of the INPUT_CHAR function:

GEST ARRAY [0..3] OF INT Exchange management table consisting of the following
words:
 Rank 1 word: a word managed by the system and

consisting of two bytes:
 Most significant byte: exchange number
 Least significant byte: activity bit (rank 0) and cancel

bit (rank 1)

 Rank 2 word: a word managed by the system and
consisting of two bytes:
 Most significant byte: operation report
 Least significant byte: communication report

 Rank 3 word: a word managed by the user, which defines
the maximum response time using a time base of 100 ms.

 Rank 4 word: a word managed by the user which defines
the length of the exchange.
 If this parameter length is set to 0 then the system

sends the string entirely.
 If this parameter length is greater than the length of the

string then the error 16#0A (Insufficient send buffer
size) is returned into the 2nd management word and
no character is sent.

Note: In case of PRINT_CHAR, the fourth management
word (length to send) must not be written while the activity
bit is 1 (i.e. once EF is running). Otherwise PRINT_CHAR
could be locked with error 0xB.

Parameter Type Description

Parameter Type Description

ADR ARRAY [0..7] OF INT Address of the message receiving character mode channel
given by the OUT parameter of the ADDM function.

RAZ INT Reset. This parameter is used to reset the receive memory
of the coupler:
 Value = 0: no memory reset
 Value = 1: memory reset

NB INT Length of character string to be received.
126 35012430 12/2015

GEST ARRAY [0..3] OF INT Exchange management table consisting of the following
words:
 Rank 1 word: a word managed by the system and

consisting of two bytes:
 Most significant byte: exchange number
 Least significant byte: activity bit (rank 0) , cancel bit

(rank 1) and immediate aknowledge bit (rank 2)

 Rank 2 word: a word managed by the system and
consisting of two bytes:
 Most significant byte: operation report
 Least significant byte: communication report

 Rank 3 word: a word managed by the user which defines
the maximum response time using a time base of 100 ms.

 Rank 4 word: a word managed by the system which
defines the length of the exchange.

RECP STRING Character string received. This string is saved in a character
string.

Parameter Type Description
35012430 12/2015 127

Debugging Character Mode communication

Section 6.4
Debugging Character Mode communication

Character Mode Communication Debug Screen

General

The Character Mode debug screen is accessible in online mode.

Accessing the Debug Screen

The following table describes the procedure for accessing the debug screen for Character Mode
communication:

Description of the Debug Screen

The debug screen consists of an Error zone and a Signals zone.

The Error Zone

The Error zone looks like this:

This zone indicates the number of communication interruptions counted by the processor:
 On transmission: corresponds to the number of interruptions on transmission

(image of %MW4 word).
 On reception: corresponds to the number of interruptions on reception (image of %MW5 word).

The Reset Counters button resets both counters to zero.

Step Action

1 Access the configuration screen for Character Mode communication.
(see page 109)

2 Select the "Debug" tab on the screen that appears.
128 35012430 12/2015

The Signals Zone

The Signals zone looks like this:

This zone indicates the activity of the signals:
 CTS RS232: shows the activity of the CTS signal.
 DCD RS232: not managed by the processor (no activity on this LED).
 DSR RS232: not managed by the processor (no activity on this LED).
35012430 12/2015 129

35012430 12/2015 130

Modicon M340 with Unity Pro

35012430 12/2015
Modbus Serial Communication for BMX NOM 0200

Chapter 7
Modbus Serial Communication for BMX NOM 0200

Subject of this Chapter

This chapter presents the software implementation process for Modbus serial communication for
BMX NOM 0200.

What Is in This Chapter?

This chapter contains the following sections:

Section Topic Page

7.1 Generalities 132

7.2 Modbus Serial Communication Configuration 139

7.3 Modbus Serial Communication Programming 156

7.4 Debugging Modbus Serial Communication 174
35012430 12/2015 131

Generalities

Section 7.1
Generalities

Subject of this Section

This section presents the general points relating to Modbus serial communication and its services.

What Is in This Section?

This section contains the following topics:

Topic Page

About Modbus Serial 133

Performance 134

How to Access the Serial Link Parameters 136
132 35012430 12/2015

About Modbus Serial

Introduction

Communicating via Modbus enables data exchange between all devices connected to the bus.
The Modbus Serial is a protocol that creates a hierarchical structure (one master and several
slaves).

The master manages all exchanges in two ways:
 The master exchanges with the slave and awaits a response.
 The master exchanges with all the slaves without waiting for a response (general broadcast).

NOTE: Be careful that two masters (on the same bus) do not send requests simultaneously
otherwise the requests are lost and each report will have a bad result which could be 16#0100
(request could not be processed) or 16#ODFF (slave is not present).

WARNING
CRITICAL DATA LOSS

Only use communications port for non-critical data transfers.

Failure to follow these instructions can result in death, serious injury, or equipment
damage.
35012430 12/2015 133

Performance

At a Glance

The tables that follow can be used to evaluate typical Modbus communication exchange times
according to different criteria.

The results displayed correspond to the average operation period for the READ_VAR function in
milliseconds.

Exchange Time Definition

The Exchange Time is the time between the creation of an exchange and the end of that exchange.
It includes the serial link communication time.

The exchange is created when the communication function call is made.

The exchange ends when one of the following events occurs:
 Data is received.
 An anomaly occurs.
 Time-out expires.

Exchange Time for One Word

The table below shows exchange times for one word of Modbus communication on a
BMX NOM 0200 module:

Baud rate of communication in
bits per second

Cycle time in ms Exchange time in ms
Modbus Slave is a
BMX P34 1000 cyclic

4800 Cyclic 65

4800 10 68

4800 50 100

9600 Cyclic 38

9600 10 47

9600 50 50

19200 Cyclic 29

19200 10 38

19200 50 50

38400 Cyclic 24

38400 10 30

38400 50 50

57600 Cyclic 17

57600 10 20
134 35012430 12/2015

Exchange Time for 100 Words

The table below shows exchange times for 100 words of Modbus communication on a
BMX NOM 0200 processor:

Measurement Accuracy

All exchange times listed above come from measures with an accuracy margin of +/-10 ms.

57600 50 50

115200 Cyclic 17

115200 10 20

115200 50 50

Baud rate of communication in
bits per second

Cycle time in ms Exchange time in ms
Modbus Slave is a
BMX P34 1000 cyclic

Baud rate of communication in
bits per second

Cycle time in ms Exchange time in ms
Modbus Slave is a
BMX P34 1000 cyclic

4800 Cyclic 560

4800 10 560

4800 50 600

9600 Cyclic 286

9600 10 295

9600 50 300

19200 Cyclic 152

19200 10 160

19200 50 200

38400 Cyclic 86

38400 10 90

38400 50 100

57600 Cyclic 56

57600 10 60

57600 50 100

115200 Cyclic 36

115200 10 40

115200 50 50
35012430 12/2015 135

How to Access the Serial Link Parameters

At a Glance

The following pages explain how to access the serial ports configuration screen for the
BMX NOM 0200 module as well as the general elements of the Modbus and Character Mode link
configuration and debug screens.

How to Access the Serial Link

The table below describes the procedure for accessing the serial link of a BMX NOM 0200 module:

Step Action

1 Open the hardware configuration editor.

2 Double-click on the BMX NOM 0200 module.

3 Select the channel to configure (Channel 0 or Channel 1).
Result with Channel 0 selected:

Bus Module 2 RS485/232 port

Function :
None

Channel 1
Channel 0

BMX NOM 0200
136 35012430 12/2015

4 Select the Modbus link function.
Result with Channel 0 selected:

Step Action

Bus Module 2 RS485/232 port

Configuration

Channel 1
Channel 0

BMX NOM 0200

Function :
Modbus link

Master

Type

Slave

External

Signals

RX/TX

X 100ms

X 10ms

Number of retries

Answer delay

RX/TX +
RTS/CTS

RX/TX +
RTS/CTS +
DTR/DSR/DCD

Delay between frames

Default

Data

ASCII (7bits)

RTU (8bits)

RTC/CTS delay

Parity

Even Odd None

2 bits

1 bits

Stop

ms

Transmission speed

Physical line

RS232

RS485

Slave number

Master

Task:
MAST

19200 bits/s

2

2

3

4

5

1

0

100

3

1

35012430 12/2015 137

Description of the Configuration Screen

The following table shows the different elements of the configuration screens:

Key Element Function

1 Tabs The tab in the foreground indicates the mode currently in use (Configuration in this
example). Each mode can be selected using the corresponding tab. The available
modes are:
 Configuration
 Debug (accessible in online mode only)
 Diagnostic (accessible in online mode only)

2 Module Zone Displays module reference and module LEDs status in online mode.

3 Channel zone Enables you to:
 Display the following tabs by clicking on BMX NOM 0200:
 "Overview", which gives the characteristics of the device.
 "I/O Objects" (see Unity Pro, Operating Modes), which is used to presymbolize

the input/output objects.
 "Fault", which shows the detected device faults (in online mode).

 Display the following tabs by clicking on Channel 0 or Channel 1:
 "Configuration"
 "Debugging"
 "Fault"

 Display the channel name and symbol defined by the user (using the variables
editor).

4 Genera
parameters
zone

This enables you to choose the general parameters associated with the channel:
 Function: The available functions are "None", "Modbus link" and “Character mode

link". By default, the "None" function is configured.
 Task: Defines the master task in which the implicit exchange objects of the channel

will be exchanged. This zone is grayed out and cannot be configured.

5 Configuration,
debugging or
fault zone

In configuration mode, this zone is used to configure the channel parameters.
In debug mode, it is used to debug the communication channel.
In diagnostic mode, it is used to display current detected errors either at module or at
channel level.
138 35012430 12/2015

Modbus Serial Communication Configuration

Section 7.2
Modbus Serial Communication Configuration

Subject of this Section

This section describes the software configuration process for Modbus serial communication.

What Is in This Section?

This section contains the following topics:

Topic Page

Modbus Serial Communication Configuration Screen in a Modicon M340 Local Rack 140

BMX NOM 0200 Modbus Serial Communication Configuration Screen in X80 Drop 143

Accessible Modbus Functions 146

Default Values for Modbus Serial Communication Parameters 147

Application-linked Modbus Parameters 148

Transmission-linked Modbus Parameters 150

Signal and Physical Line Parameters in Modbus 152

How to Set the BMX NOM0200 MODBUS Slave Address Without Unity Pro? 154
35012430 12/2015 139

Modbus Serial Communication Configuration Screen in a Modicon M340 Local
Rack

General

The following pages provide an introduction to the configuration screen for Modbus serial
communication.

Access to the Configuration Screen

The following table describes the procedure for accessing the configuration screen for Modbus
serial communication:

Step Action

1 Open the BMX NOM 0200 sub-directory in the project browser (see page 136).

2 Select the Channel to configure and "Modbus link" function on the screen that appears.
140 35012430 12/2015

Illustration

The figure below shows the default configuration screen for Modbus serial communication on
Channel 0:
35012430 12/2015 141

Description

These zones are used to configure channel parameters. In the online mode, these zones are
accessible. In the offline mode, these zones are accessible, but some parameters may not be
accessible and are grayed out.

The following table shows the different zones of the Modbus link configuration screen:

NOTE: When configuring Modbus serial communication in Master mode, the "Slave" zone is
grayed out and cannot be modified and vice-versa.

Key Element Comment

1 Application
parameters
(see page 148)

These parameters are accessible via three zones:
 Type,
 Master,
 Slave.

2 Transmission
parameters
(see page 150)

These parameters are accessible via five zones:
 Transmission speed,
 Delay between frames,
 Data,
 Stop bits,
 Parity.

3 Signal and
physical line
parameters
(see page 152)

These parameters are accessible via three zones:
 Physical line,
 Signals,
 RTS/CTS delay.
142 35012430 12/2015

BMX NOM 0200 Modbus Serial Communication Configuration Screen in X80
Drop

General

The following pages provide an introduction to the configuration screen for Modbus serial
communication.

NOTE: When the BMX NOM 0200 is in a Quantum Ethernet I/O X80 drop, it must have:
 Product software = 04
 Software software 1.4

This information is visible on the label on the side of the module.

Access to the Configuration Screen

The following table describes the procedure for accessing the configuration screen for Modbus
serial communication:

Step Action

1 Open the BMX NOM 0200 sub-directory in the project browser (see page 136).

2 Select the Channel to configure and "Modbus link" function on the screen that appears.
35012430 12/2015 143

Illustration

The figure below shows the default configuration screen for Modbus serial communication on
Channel 0:
144 35012430 12/2015

Description

These zones are used to configure channel parameters. In the online mode, these zones are
accessible. In the offline mode, these zones are accessible, but some parameters may not be
accessible and are grayed out.

The following table shows the different zones of the Modbus link configuration screen:

NOTE: When configuring Modbus serial communication in Master mode, the Slave parameters
are grayed out and cannot be modified.

Key Element Comment

1 Application
parameters
(see page 148)

These parameters are accessible via three zones:
 Type,
 Master,
 Slave.

2 Transmission
parameters
(see page 150)

These parameters are accessible via five zones:
 Transmission speed,
 Delay between frames,
 Data,
 Stop bits,
 Parity.

3 Signal and
physical line
parameters
(see page 152)

These parameters are accessible via three zones:
 Physical line,
 Signals,
 RTS/CTS delay.
35012430 12/2015 145

Accessible Modbus Functions

At a Glance

Function accessibility for configuration of the serial link of a BMX NOM 0200 module using Modbus
serial depends on the physical link being used.

Accessible Functions

The table below shows the different functions configurable according to the type of serial link used:

X Accessible Function
- Unaccessible Function

Function RS485 Link (on Channel 0 or
Channel 1)

RS232 Link (on Channel 0)

Master number of retries X X

Master answer delay X X

Slave number X X

Transmission speed X X

Delay between frames X X

Data ASCII (7 bits)
 RTU (8 bits)

 ASCII (7 bits)
 RTU (8 bits)

Stop 1 bit
 2 bits

 1 bit
 2 bits

Parity Odd
 Even
 None

 Odd
 Even
 None

RX/TX signals X X

RTS/CTS signals - X

RTS/CTS delay - X

DTR/DSR/DCD Signals - X

Polarization - -
146 35012430 12/2015

Default Values for Modbus Serial Communication Parameters

At a Glance

All Modbus serial communication parameters have default values.

Default Values

The table below shows the default values for Modbus serial communication parameters on
Channel 0 and Channel 1 of the BMX NOM 0200 module:

Configuration parameter Value

Mode Slave

Physical Line RS232

Slave number 1

Delay between frames 2 ms

Transmission speed 19200 bits/s

Parity Even

Data Bits RTU (8 bits)

Stop bits 1 bit
35012430 12/2015 147

Application-linked Modbus Parameters

At a Glance

After configuring the communication channel, you need to enter the application parameters.

These parameters are accessible from three configuration zones:
 The Type zone,
 The Master zone,
 The Slave zone.

The Type Zone

This configuration zone appears on the screen as shown below:

This zone enables you to select the role to be configured for the module in the Modbus serial
communication:
 Master: When the module is the master.
 Slave: When the module is a slave.

The Master Zone

The configuration zone shown below is only accessible when "Master" is selected in the "Type"
zone:

This zone enables you to enter the following parameters:
 Number of retries: number of connection attempts made by the master before defining the

slave as absent.
The default value is 3.
Possible values range from 0 to 15.
A value of 0 indicates no retries by the Master.

 Answer delay: the time between the Master’s initial request and a repeated attempt if the slave
does not respond. This is the maximum time between the transmission of the last character of
the Master’s request and the receipt of the first character of the request sent back by the slave.
The default value is 1 second (100*10 ms).
Possible values range from 10 ms to 10 s.

NOTE: The Answer delay of the Master must be at least equal to the longest Answer delay of the
Slaves present on the bus.
148 35012430 12/2015

NOTE: In broadcast mode, the value configured as Answer Delay is used as Broadcast delay:
minimum time between two exchanges in broadcast mode.

The Slave Zone

The configuration zone shown below is only accessible when "Slave" is selected in the "Type"
zone:

This zone enables you to enter the processor’s slave number:

The default value is 1.

Possible values range from 1 to 247.

Selection of External grays the Slave number field and makes the module use the value of the
slave address saved into its internal (see page 154) FLASH memory.

NOTE: If the address stored into the FLASH is not into the MODBUS range address, then the
default slave address 248 will be used.
When the firmware of the module is updated, the default slave address stored into the FLASH is
set to 248. A new command has to be used to re-initialize the FLASH address.

Slave

ExternalSlave number 98
35012430 12/2015 149

Transmission-linked Modbus Parameters

At a Glance

After configuring the communication channel, you need to enter the transmission parameters.

These parameters are accessible from five zones:
 The Transmission Speed zone,
 The Delay Between Characters zone,
 The Data zone,
 The Stop zone,
 The Parity zone.

The Transmission Speed Zone

This configuration zone appears on the screen as shown below:

You can use it to select the transmission speed of the Modbus serial link. The selected speed has
to be consistent with the other devices. The configurable values are 300, 600, 1200, 2400, 4800,
9600, 19200, 38400, 57600 and 115200 (only on channel 0 in RS232 mode) bits per second.

The Delay Between Frames Zone

This configuration zone shown below is only accessible in RTU mode (it is grayed in ACSCII
mode):

The Delay Between Frames is the minimum time separating two frames on reception. This delay
is managed when the BMX NOM 0200 (master or slave) is receiving messages.

NOTE: The default value depends on the selected transmission speed.

NOTE: The delay between frames should be the Default value in order to be Modbus compliant.
In case a Slave is not conform, the value can be changed and should be identical for the Master
and all Slaves on the Bus.
150 35012430 12/2015

The Data Zone

This configuration zone appears on the screen as shown below:

This zone allows you to enter the type of coding used to communicate using Modbus serial link.
This field is set according to the other devices connected on the bus. There are two configurable
modes:
 RTU mode:
 The characters are coded over 8 bits.
 The end of the frame is detected when there is a silence of at least 3.5 characters.
 The integrity of the frame is checked using a word known as the CRC checksum, which is

contained within the frame.

 ASCII mode:
 The characters are coded over 7 bits.
 The beginning of the frame is detected when the ":" character is received.
 The end of the frame is detected by a carriage return and a line feed.
 The integrity of the frame is checked using a byte called the LRC checksum, which is

contained within the frame.

The Stop Zone

This configuration zone appears on the screen as shown below:

The Stop zone allows you to enter the number of stop bits used for communication. This field is set
according to the other devices. The configurable values are:
 1 bit
 2 bits

The Parity Zone

This configuration zone appears on the screen as shown below:

This zones enables you to determine whether a parity bit is added or not, as well as its type. This
field is set according to the other devices. The configurable values are:
 Even
 Odd
 None
35012430 12/2015 151

Signal and Physical Line Parameters in Modbus

At a Glance

After configuring the communication channel, you need to enter the signal and physical line
parameters.

These parameters are accessible via three zones:
 The Physical Line zone,
 The Signals zone,
 The RTS/CTS Delay zone.

The Physical Line Zone

This configuration zone shown below is accessible only on Channel 0 (it is grayed out and
configured to RS485 on Channel 1):

In this zone, you can choose between two types of physical line for the serial port on the
BMX NOM 0200 module:
 The RS232 line,
 The RS485 line.

The Signals Zone

This configuration zone appears on the screen as shown below:

In this zone, you can select the signals supported by the RS232 physical line:
 RX/TX
 RX/TX + RTS/CTS (hardware flow management signals)
 RX/TX + RTS/CTS + DTR/DSR/DCD (Modem signals)

If the RS485 is configured, the entire zone is grayed out and the default value is RX/TX.
152 35012430 12/2015

The RTS/CTS Delay Zone

This configuration zone appears on the screen as shown below:

RTS/CTS delay zone is available only when both RS232 and RX/TX+RTS/CTS or
RX/TX+RTS/CTS+DTR/DSR/DCD check boxes are selected. An RTS/CTS hardware flow control
is performed.

The RTS/CTS hardware flow control algorithm aims at preventing the overflow reception buffer (full
duplex).

The RTS/CTS delay corresponds to the time out delay between the RTS rise up and the CTS rise
up. A RTS/CTS delay value different from 0 also corresponds to the maximum waiting time
between each character transmission after the rise of RTS and CTS signals. If the value is set to
0, UARTs can get stuck in a waiting state for an infinite time until the CTS rise up so the value 0 is
used only in particular cases such as looping the RTS signal to the CTS signal in order to check
that all connection are operating correctly.

NOTE: The default value is 0 ms.
35012430 12/2015 153

How to Set the BMX NOM0200 MODBUS Slave Address Without Unity Pro?

Condition and Prerequisite

The FLASH address can be updated in any mode but it is taken into account only when an
operating mode is performed.

The list below indicates the conditions and prerequisite to set the BMX NOM0200 MODBUS
address without Unity Pro:
 To use the FLASH address, the module must be configured:
 In MODBUS slave protocol with the EXTERNAL checkbox.

 In MODBUS master protocol or in CHAR mode and then switched to MODBUS slave
protocol.

Update the MODBUS Slave Address into the FLASH by Applicative Commands

The table below indicates the operations to update the MODBUS slave address into the FLASH by
applicative commands:

NOTE: Several orders can be embedded in the same command. If one of the orders cannot be
executed, the whole command will be rejected and no order is executed.

Step Action

1 Store the slave address into the %MWr.m.c.25.

2 Set the bit %MWr.m.c.24.7.

3 Send the WRITE_CMD to the module channel.

4 Check the command end (%MWr.m.c.0.1 fall down) and the command is
accepted (%MWr.m.c.1.1 is at zero means no error) => the FLASH is updated.

5 Perform one of the following operating modes onto the channel to take the new
address into account:
 Application Download
 Cold Start
 Warm Start
 Hot Swap
 Switch protocol (TO SLAVE)

6 Perform a READ_STS onto the channel to check the slave address in the
%MWr.m.c.3 most significant byte.
154 35012430 12/2015

Update the MODBUS Slave Address into the FLASH Over the Serial Line

The table below indicates the operations to update the MODBUS slave address into the FLASH
over the serial line:

NOTE: Do not modify the FLASH regularly to avoid to damage this component (100,000 writing
cycles max).

Step Action

1 Configure the MASTER equipment with the same serial line parameter than a
channel of the module.

2 Connect the MASTER to the module in point to point.

3 Send the request 0x11 to the point to point address: 0xF8 0x11 0x01
channelnumber(0 or 1) slaveID(0..0xF8)

4 Check the response is OK => the FLASH is updated.

5 Perform an operating mode onto the channel to take the modification in step 4
into account.

6 Send a request 0x11 to check the new slave address: slaveID 0x11 0x01
35012430 12/2015 155

Modbus Serial Communication Programming

Section 7.3
Modbus Serial Communication Programming

Subject of this Section

This section describes the programming process involved in implementing Modbus serial
communication.

What Is in This Section?

This section contains the following topics:

Topic Page

Services Supported by a Modbus Link Master Module 157

Services Supported by a Modbus Link Slave Module 165

Detail of Modbus Expert Mode 167
156 35012430 12/2015

Services Supported by a Modbus Link Master Module

At a Glance

When used as the master in a Modbus link, a BMX NOM 0200 module supports several services
via the READ_VAR, WRITE_VAR and DATA_EXCH communication functions.

Data Exchanges

Reading or writing of variables are carried out by adressing following requests to the targeted slave
device.

These requests use the READ_VAR and WRITE_VAR communication functions:

More generally, it is possible to send any Modbus requests to a slave device by using the
DATA_EXCH communication function.

READ_VAR, WRITE_VAR and DATA_EXCH Communication Functions

Three specific communication functions are defined for sending and receiving data via a Modbus
communication channel:
 READ_VAR: To read variables
 WRITE_VAR: To write variables
 DATA_EXCH: To send Modbus requests to another device over the selected protocol

Modbus request Function code Communication function

Read bits 16#01 or 16#02 READ_VAR

Read words 16#03 or 16#04 READ_VAR

Write bits 16#0F WRITE_VAR

Write words 16#10 WRITE_VAR
35012430 12/2015 157

Programming Example in FBD

The diagram below represents an example of programming of the READ_VAR, WRITE_VAR and
DATA_EXCH communication functions in the FBD language:
158 35012430 12/2015

Programming Example in Ladder

The diagram below represents an example of programming of the READ_VAR, WRITE_VAR and
DATA_EXCH communication functions in the Ladder language:

Programming Example in ST

The lines of code below represent an example of programming of the READ_VAR, WRITE_VAR and
DATA_EXCH communication functions in the ST language:

READ_VAR(ADDM(’0.0.0.6’), ’MW’, 100, 10, Management_Table,
Receiving_Table);

WRITE_VAR(ADDM(’0.0.0.6’), ’%MW’, 100, 10, Data_to_write,
Management_Table);

DATA_EXCH(ADDM(’0.0.0.6’), 1, Data_to_send, Management_Table,
Received_data);
35012430 12/2015 159

Cancelling an Exchange

An exchange executed by the READ_VAR, WRITE_VAR and DATA_EXCH functions can be
cancelled with either ways of programming, which are both presented in ST language below:
 Using the CANCEL function:

IF (%MW40.0) THEN
 %MW200:=SHR(%MW40,8;)
 CANCEL(%MW200,%MW185);
END_IF;
%MW40 is the GEST parameter (management table). %MW40.0 corresponds to the activity bit of
the READ_VAR function and is set to 1 when the communication function is active. If this bit is
set to 1, the program carries out the following instructions:
 Moves the %MW40 bits one byte (8 bits) to the right and loads the byte corresponding to the

communication’s exchange number into the %MW200 word,
 Cancels the exchange whose exchange number is contained within the %MW200 word using

the CANCEL function.

 Using the communication function cancel bit:
IF (%MW40.0) THEN
 SET(%MW40.1);
 READ_VAR(ADDM(’0.0.0.6’), ’%MW’, 100, 10, %MW40:4, %MW10:10);
END_IF;
%MW40 is the GEST parameter (management table). %MW40.0 corresponds to the activity bit of
the READ_VAR function and is set to 1 when the communication function is active. If this bit is
set to 1, the program sets the %MW40.1 bit, the function cancel bit, to 1. This stops
communication of the READ_VAR function.

NOTE: When using the communication function cancel bit contained in the function exchange
management word (%MW40 in this example), the function (READ_VAR in this example) must be
called in order to activate the cancellation of the exchange.

NOTE: When using the communication function cancel bit, it is possible to cancel a communication
from an animation table. This can be done by simply setting the function cancel bit to 1 (%MW40.1
in this example) and then start again the communication function.

NOTE: This example of programming concerns the READ_VAR function, but is equally applicable
to the WRITE_VAR as well as the DATA_EXCH functions.

NOTE: The CANCEL function uses a report word for the CANCEL function (%MW185 in this
example).
160 35012430 12/2015

Description of ADDM Function Parameters

The following table outlines the various parameters for the ADDM function:

Description of READ_VAR Function Parameters

The following table outlines the various parameters for the READ_VAR function:

Parameter Type Description

IN STRING Address of device on bus or serial link. The syntax
of the address is of the ‘r.m.c.node’ type. The
address is made up of the following parameters:
 r: Rack number of the module
 m: Slot number of the module within the rack
 c: Channel number of the module
 node: Number of slave to which the request is

being sent

OUT ARRAY [0..7] OF INT Array representing the address of a device. This
parameter can be used as an input parameter for
several communication functions.

Parameter Type Description

ADR ARRAY [0..7] OF INT Address of the destination entity given by the OUT
parameter of the ADDM function.

OBJ STRING Type of object to be read. The available types are
as follows:
 %M: internal bit
 %MW: internal word
 %I: external input bit
 %IW: external input word

NUM DINT Address of first object to be read.

NB INT Number of consecutive objects to be read.
35012430 12/2015 161

Description of WRITE_VAR Function Parameters

The following table outlines the various parameters of the WRITE_VAR function:

GEST ARRAY [0..3] OF INT Exchange management table consisting of the
following words:
 Rank 1 word: A word managed by the system

and consisting of two bytes:
 Most significant byte: Exchange number,
 Least significant byte: Activity bit (rank 0) and

cancel bit (rank 1).

 Rank 2 word: a word managed by the system
and consisting of two bytes:
 Most significant byte: Operation report,
 Least significant byte: Communication

report.

 Rank 3 word: A word managed by the user
which defines the maximum response time
using a time base of 100 ms.

 Rank 4 word: A word managed by the system
which defines the length of the exchange.

RECP ARRAY [n..m] OF INT Word table containing the value of the objects read.

Parameter Type Description

Parameter Type Description

ADR ARRAY [0..7] OF INT Address of the destination entity given by the OUT
parameter of the ADDM function.

OBJ STRING Type of object to be written. The available types are
as follows:
 %M: internal bit
 %MW: internal word

Note: WRITE_VAR cannot be used for %I and %IW
variables.

NUM DINT Address of first object to be written.

NB INT Number of consecutive objects to be written.

EMIS ARRAY [n..m] OF INT Word table containing the value of the objects to be
written.
162 35012430 12/2015

Description of DATA_EXCH Function Parameters

The following table outlines the various parameters of the DATA_EXCH function:

GEST ARRAY [0..3] OF INT Exchange management table consisting of the
following words:
 Rank 1 word: A word managed by the system

and consisting of two bytes:
 Most significant byte: Exchange number,
 Least significant byte: Activity bit (rank 0) and

cancel bit (rank 1).

 Rank 2 word: A word managed by the system
and consisting of two bytes:
 Most significant byte: Operation report,
 Least significant byte: Communication

report.

 Rank 3 word: A word managed by the user
which defines the maximum response time
using a time base of 100 ms.

 Rank 4 word: A word managed by the system
which defines the length of the exchange.

Parameter Type Description

Parameter Type Description

ADR ARRAY [0..7] OF INT Address of the destination entity given by the OUT
parameter of the ADDM function.

TYPE INT For Modicon M340 PLCs, the only possible value is
1: Transmission of an EMIS array, then the PLC
waits for the reception of a RECP array.

EMIS ARRAY [n..m] OF INT Integers table to be sent to the destination device of
the request.
Note: It is imperative that the length of the data to
be sent (in bytes) be assigned to the fourth word of
the management table before launching the
function, in order for this to be correctly executed.
35012430 12/2015 163

GEST ARRAY [0..3] OF INT Exchange management table consisting of the
following words:
 Rank 1 word: A word managed by the system

and consisting of two bytes:
 Most significant byte: Exchange number.
 Least significant byte: Activity bit (rank 0) and

cancel bit (rank 1).

 Rank 2 word: A word managed by the system
and consisting of two bytes,:
 Most significant byte: Operation report,
 Least significant byte: Communication

report.

 Rank 3 word: A word managed by the user
which defines the maximum response time
using a time base of 100 ms.

 Rank 4 word: A word managed by the system
which defines the length of the exchange.

RECP ARRAY [n..m] OF INT Integers table containing the data received.
Note: The size of the data received (in bytes) is
written automatically by the system in the fourth
word of the management table.

Parameter Type Description
164 35012430 12/2015

Services Supported by a Modbus Link Slave Module

At a Glance

When used as a slave in a Modbus link, a BMX NOM 0200 module supports several services.

Data Exchanges

A slave module manages the following requests:

NOTE: Read/Write multiple %MW
The WRITE performs before the READ to be able to write and read the same registers in same time
as IOscanning. If the exchange size of the WRITE or the READ is out of boundary then the return
status will be “ILLEGAL DATA ADDRESS”, but if only the READ fail then the WRITE will be done
with the same status.

Diagnostics and Maintenance

The diagnostics and maintenance requests managed by a Modbus slave BMX NOM 0200 module
are listed below:

Modbus request Function code PLC object

Read n output bits 16#01 %M

Read n output words 16#03 %MW

Write n output bits 16#0F %M

Write n output words 16#10 %MW

Read/Write n output words 16#17 %MW

Designation Function code/sub-function code

 Read exception status 16#07

Restart Communications Option 16#08 / 16#01

Return Diagnostic Register 16#08 / 16#02

Change ASCII Input Delimiter 16#08 / 16#03

Force Listen Only Mode 16#08 / 16#04

Clear Counters and Diagnostic Register 16#08 / 16#0A

Return Bus Message Count 16#08 / 16#0B

Return Bus Communication Error Count 16#08 / 16#0C

Return Bus Exception Error Count 16#08 / 16#0D

Return Slave Message Count 16#08 / 16#0E

Return Slave No Response Count 16#08 / 16#0F

Return Slave Negative Acknowledgements Count 16#08 / 16#10
35012430 12/2015 165

Return Slave Busy Count 16#08 / 16#11

Return Bus Character Overrun Count 16#08 / 16#12

 Get Communication event Counter 16#0B

 Get Communication event Log 16#0C

 Report Slave identification 16#11

Write Slave identification 16#11 / 16#01

Designation Function code/sub-function code
166 35012430 12/2015

Detail of Modbus Expert Mode

Expert Mode Communication

Expert mode is a set of commands that can be sent to the module to get extra features.

Address Standard Symbol Exchange
Type

Type Meaning

%MWr.m.c.24 CONTROL Explicit INT Command signal, change
protocol

%MWr.m.c.24.0 Explicit BOOL Erase local counters

%MWr.m.c.24.1 Explicit BOOL Change dynamically the
retries count in MODBUS
master mode (%MW26)

%MWr.m.c.24.2 Explicit BOOL Change the slave answer
delay (%MW28) for a specific
slave (%MW27) in master mode

%MWr.m.c.24.3 Explicit BOOL Modify the default slave blind
time, the slave ignore received
char after a frame reception
forwarded to the CPU (%MW29)

%MWr.m.c.24.4 Explicit BOOL Modify the MODBUS RTU
internal timings t1,5ch
(%MW31), t3,5ch (%MW30), and
inter exchange delay (%MW32).
This value update may disturb
the module if it’s working
35012430 12/2015 167

%MWr.m.c.24.6 Explicit BOOL Change HALF/FULL DUPLEX
modem management mode
 If set simultaneously with

RTS_ON
(%MWr.m.c.24.10 works
also with RTS_OFF
%MWr.m.c.24.11 and
use DTR if
%MWr.m.r.24.8 or
%MWr.m.r.24.9 is used)
the half duplex modem
mode is activated

 If this bit is set but none of
the RTS/DTR (neither
%MWr.m.c.24.8,
%MWr.m.c.24.9,
%MWr.m.c.24.10,
%MWr.m.c.24.11) the full
duplex mode is activated

The %MW26 is used to set the
StartDelay and %MW27 is used
to set the EndDelay. So the bit
%MW24.5 and %MW24.1 and
%MW24.2 cannot be used
simultaneously.
NOTE: The user may have to
restore the correct state of the
RTS/DTR signals after the
command has been accepted.

%MWr.m.c.24.7 SAVE_SLAVE_ADDR Explicit BOOL Save the Modbus slave
address into the FLASH
(%MW25).

%MWr.m.c.24.8 DTR_ON Explicit BOOL Set the DTR signal (positive
voltage)

%MWr.m.c.24.9 DTR_OFF Explicit BOOL Reset the DTR signal
(negative voltage)

%MWr.m.c.24.10 Explicit BOOL Set the RTS signal (positive
voltage)

%MWr.m.c.24.11 Explicit BOOL Reset the RTS signal
(negative voltage)

%MWr.m.c.24.12 TO_MODBUS_MASTER Explicit BOOL Switch to master mode

%MWr.m.c.24.13 TO_MODBUS_SLAVE Explicit BOOL Switch to slave mode

%MWr.m.c.24.14 TO_CHAR_ MODE Explicit BOOL Switch to character mode

Address Standard Symbol Exchange
Type

Type Meaning
168 35012430 12/2015

%MWr.m.c.25 SLAVE_ADDR Explicit INT Modbus slave address to store
in FLASH

%MWr.m.c.26 Explicit INT LOW BYTE : MasterRetries
count: Retry number in master
mode [0..15] see %MW24.1
StartDelay if %MW26.6 is set.
Time to wait after the CTS is
OK before to start to send the
frame. It is useful for modem
that requires extra time after
CTS or do not manage the
CTS signal (in this case the
RTS must be connected to the
CTS). This time is in
millisecond, the precision is
about 3ms. Can be performed
only in RS232 mode.

%MWr.m.c.27 Explicit INT LOW BYTE : Slave for which
the master will adapt the
answer delay [0..248,
255=ALL] see %MW24.2 and
%MW28
EndDelay if %MW24.6 is set.
Time to wait after having sent
a frame, before to release the
RTS signal to let enough time
to the MODEM to completely
send the frame before hand-
up. This time is in millisecond,
the precision is about 3ms.
Can be performed only in
RS232 mode.

%MWr.m.c.28 Explicit INT Specific answer delay for a
slave in 10ms [1..1000] see
%MW24.2 and %MW27

%MWr.m.c.29 Explicit INT Blind time in 10ms [1..10] see
%MW24.3

Address Standard Symbol Exchange
Type

Type Meaning
35012430 12/2015 169

Sample of Code

(* master sideNOM is is rack 0 slot 9 *)

if HalfModemMaster then

 HalfModemMaster:=false;

 %MW0.9.0.24:=16#0450;(* switch to half duplex mode with RTS, and change MODBUS timings*)

 %MW0.9.0.26:=12;(* 12ms to wait before sending when CTS raise *)

 %MW0.9.0.27:=9; (* let RTS up 9ms after sending end *)

 %MW0.9.0.30:=0;

 %MW0.9.0.31:=0;(*use the value of the configuration screen equal 6ms *)

 %MW0.9.0.32:=50; (*50ms of delay before sending a new frame*)

 write_cmd(%ch0.9.0);(* send command and data to the NOM channel*)

%MWr.m.c.30 Explicit INT T3,5char: Inter frame delay in
milliseconds [0..10000]. The
value used depends of the
speed. If the value is smaller or
greater than possible values,
the lower limit or upper limit is
applied, and the command is
accepted. A value 0 means no
change in RTU.
The answer delay is computed
again.

%MWr.m.c.31 Explicit INT T1,5char : Delay between char
in milliseconds [0..9999]. The
value used depends of the
speed. If the value is smaller or
greater than possible values,
the lower limit or upper limit is
applied, and the command is
accepted. A value 0 means
compute T1,5 as T3,5ch – 2ch
(default compute).

%MWr.m.c.32 Explicit INT Master inter exchange delay in
RTU mode [0..256] in
miliseconds. The value 0
means “no delay”, if the value
is less than 10bits duration,
the minimal value of 10 bits is
used.

Address Standard Symbol Exchange
Type

Type Meaning
170 35012430 12/2015

end_if;

(* slave side the NOM is in rack 0 slot 3 *)

if HalfModemSlave then

 HalfModemSlave:=false;

 %MW0.3.0.24:=16#0448;(* switch to half duplex mode with RTS, and change the slave blind
time*)

 %MW0.3.0.26:=12;(* 12ms to wait before sending when CTS raise *)

 %MW0.3.0.27:=9; (* let RTS up 9ms after sending end *)

 %MW0.3.0.29:=4; (* 4*10ms of blind time *)

 write_cmd(%ch0.3.0);(* send command and data to the NOM channel*)

end_if;

(* optional: sending the command automatically *)

if %S0 or %S1 or %S13 then

 memoSendCmd:=true;

end_if;

(* copy each cycle the module error to detect module disparition *)

memoSendCmd:=%I0.3.0.ERR;

(* if the module is OK send the command one time *)

if FE(memoSendCmd) then

 HalfModemSlave:=true;

end_if;

NOM Internal Register Readable

Nom internal registers can be accessed only in MODBUS mode by using the READ_VAR EF.
Sample of code (the NOM module is in rack 0 slot 3):

if dataCh030GetChannelGlobalInfo then

 read_var(addm(’0.3.0’), ’%MW’, 200, 3, dataCh030Mgt, dataCh030Buff);
(* Internal_Reg@200 are copied into the buffer dataCh030Buff *)

 dataCh030GetChannelGlobalInfo := false;

end_if;

 Internal_Reg@0 : StartDelay in ms (precision about 3ms) (read or write access)
 Internal_Reg@1 : EndDelay in ms (precision about 3ms) (read or write access)
 Internal_Reg@200 : interface version number = 1
 Internal_Reg@201 : slave address stored in FLASH
 Internal_Reg@202 : 1=possible to change the FLASH, 0=forbidden to change it
35012430 12/2015 171

 Internal_Reg@1000 : Modbus master RTU internal code ch0=1110, ch1=2110
 Internal_Reg@1002 : 0 = Full Duplex - Hardware flow control, or RS485 ; 1 = Half Duplex -

Direction managed automatically by the module with RTS
 Internal_Reg@1010 : Internal sending inter char delay in bits (nbbits*1000/speed => duration

in ms) [T1,5S].
 Internal_Reg@1012 : Internal reception inter char delay in bits [T1,5R].
 Internal_Reg@1014 : Internal sending inter frame delay in bits [T3,5S]
 Internal_Reg@1016 : Internal reception inter frame delay in bits [T3,5R]
 Internal_Reg@1018 : Delay to wait before sending the next frames in bits.
 Internal_Reg@1090 : MasterRetries count.
 Internal_Reg@1100 : Slave answer delay for broadcast in 10ms.
 Internal_Reg@1101 : Slave answer delay for slave 1 in 10ms.
 …
 Internal_Reg@1348 : Slave answer delay for point to point address (248).
 Internal_Reg@1500 : Modbus RTU slave internal code ch0=1120, ch1=2120
 Internal_Reg@1502 : 0 = Full Duplex - Hardware flow control, or RS485 ; 1 = Half Duplex -

Direction managed automatically by the module with RTS
 Internal_Reg@1510 : Internal sending inter char delay in bits (nbbits*1000/speed => duration

in ms) [T1,5S].
 Internal_Reg@1512 : Internal reception inter char delay in bits [T1,5R].
 Internal_Reg@1514 : Internal sending inter frame delay in bits [T3,5S].
 Internal_Reg@1516 : Internal reception inter frame delay in bits [T3,5R].
 Internal_Reg@1518 : Delay to wait before sending the next frames in bits.
 Internal_Reg@1602 : Blind time after reception in ms.
 Internal_Reg@1606 : Listen Only Mode active = 1, (not active = 0).
 Internal_Reg@2000 : Modbus master ASCII internal code ch0=1210, ch1=2210
 Internal_Reg@2002 : 0 = Full Duplex - Hardware flow control, or RS485 ; 1 = Half Duplex -

Direction managed automatically by the module with RTS
 Internal_Reg@2010 : Internal sending inter char delay in bits (nbbits*1000/speed => duration

in ms) [T1,5S].
 Internal_Reg@2012 : Internal reception inter char delay in bits [T1,5R].
 Internal_Reg@2014 : Internal sending inter frame delay in bits [T3,5S].
 Internal_Reg@2014 : Internal sending inter frame delay in bits [T3,5S].
 Internal_Reg@2014 : Internal sending inter frame delay in bits [T3,5S].
 Internal_Reg@2016 : Internal reception inter frame delay in bits [T3,5R].
 Internal_Reg@2018 : Delay to wait before sending the next frames in bits.
 Internal_Reg@2090 : MasterRetries count.
 Internal_Reg@2100 : Slave answer delay for broadcast in 10ms.
 Internal_Reg@2101 : Slave answer delay for slave 1 in 10ms.
 …
 Internal_Reg@2348 : Slave answer delay for point to point address (248).
 Internal_Reg@2500 : Modbus ASCII slave internal code ch0=1220, ch1=2220
 Internal_Reg@2502 : 0 = Full Duplex - Hardware flow control, or RS485 ; 1 = Half Duplex -

Direction managed automatically by the module with RTS
172 35012430 12/2015

 Internal_Reg@2510 : Internal sending inter char delay in bits (nbbits*1000/speed => duration
in ms) [T1,5S].

 Internal_Reg@2512 : Internal reception inter char delay in bits [T1,5R].
 Internal_Reg@2514 : Internal sending inter frame delay in bits [T3,5S].
 Internal_Reg@2516 : Internal reception inter frame delay in bits [T3,5R].
 Internal_Reg@2518 : Delay to wait before sending the next frames in bits.
 Internal_Reg@2600 : Slave address in use.
 Internal_Reg@2602 : Blind time after reception in ms.
 Internal_Reg@2606 : Listen Only Mode active = 1, (not active = 0).
 Internal_Reg@3000 : Char mode internal code ch0=1000, ch1=2000
 Internal_Reg@3002 : 0 = Full Duplex - Hardware flow control, or RS485 ; 1 = Half Duplex -

Direction managed automatically by the module with RTS
 Internal_Reg@3100 : 0=no stop criteria active, 1 stop on silence or stop on end of char
 Internal_Reg@3102 : Internal silence in bits (min is 2 bits, max is 65535 bits)
 Internal_Reg@3104 : First End of frame byte to use 16#0100 means no byte
 Internal_Reg@3106 : First EOF : 1=end of frame byte to let in the frame, 0=remove the end of

frame byte
 Internal_Reg@3108 : Second end of frame byte
 Internal_Reg@3110 : Second EOF : 1=end of frame byte to let in the frame, 0=remove the end

of frame byte
35012430 12/2015 173

Debugging Modbus Serial Communication

Section 7.4
Debugging Modbus Serial Communication

Modbus Serial Communication Debug Screen

General

The Modbus serial communication debug screen can only be accessed in online mode.

Accessing the Debug Screen

The following table describes the procedure for accessing the debug screen for Modbus serial
communication:

Description of the Debug Screen

The debug screen is divided into two or three zones:
 The Type and Slave number zone,
 The Counters zone,
 The Signals zone (if RS232).

The Type and Slave number Zone

If the module has the function of Master in the Modbus link, this zone looks as following:

If the module has the function of Slave in the Modbus link, this zone looks as following:

Step Action

1 Access the configuration screen for Modbus serial communication.
(see page 140)

2 Select the "Debug" tab on the screen that appears.
174 35012430 12/2015

The Counters Zone

This zone looks like this:

This zone shows the various debugging counters.

The Reset Counters button resets all the debug mode counters to zero.

Counter Operation

The Modbus serial communication debugging counters are:
 Bus message counter: This counter indicates the number of messages that the module has

detected on the serial link. Messages with a negative CRC check result are not counted.
 Bus communication error counter: This counter indicates the number of negative CRC check

results counted by the module. If a character error (overflow, parity error) is detected, or if the
message is less than 3 bytes long, the system that receives the data cannot perform the CRC
check. In such cases, the counter is incremented accordingly.

 Slave exception error counter: This counter indicates the number of Modbus exception errors
detected by the module.

 Slave message counter: This counter indicates the number of messages received and
processed by the Modbus link.

 Slave ‘no response’ counter: This counter indicates the number of messages sent by the
remote system for which it has received no response (neither a normal response, nor an
exception response). It also counts the number of messages received in broadcast mode.

 Negative slave acknowledgement counter: This counter indicates the number of messages
sent to the remote system for which it has returned a negative acknowledgement.

 Slave busy counter: This counter indicates the number of messages sent to the remote system
for which it has returned a "slave busy" exception message.

 Bus character overflow counter: This counter indicates the number of messages sent to the
module that it is unable to acquire because of character overflow on the bus. Overflow is caused
by:
 Character-type data that are transmitted on the serial port more quickly than they can be

stored,
 A loss of data due to a hardware event.

NOTE: For all counters, the count begins at the most recent restart, clear counters operation or
module power-up.

Counters

Preset Counters

Slave busy count

Bus message count

Slave no response count

Slave exeption error count

Bus character overrun count

Bus communication error count

Slave NACK count

Slave message count

0

0

0

0

0

0

0

0

35012430 12/2015 175

The Signals Zone

 This zone displays only if RS232 is selected in configuration screen. If RS485 is selected in
configuration screen, this window is not displayed at all.

The Signals zone looks like this:

This zone indicates the activity of the signals:
 CTS RS232: shows the activity of the CTS signal.
 DCD RS232: shows the activity of the DCD signal.
 DSR RS232: shows the activity of the DSR signal.
176 35012430 12/2015

Modicon M340 with Unity Pro

35012430 12/2015
Character Mode Communication for BMX NOM 0200

Chapter 8
Character Mode Communication for BMX NOM 0200

Subject of this Section

This chapter presents the software implementation of communication using Character Mode for
BMX NOM 0200.

What Is in This Chapter?

This chapter contains the following sections:

Section Topic Page

8.1 Generalities 178

8.2 Character Mode Communication Configuration 179

8.3 Character Mode Communication Programming 195

8.4 Debugging Character Mode communication 209
35012430 12/2015 177

Generalities

Section 8.1
Generalities

About Character Mode Communication

Introduction

Communication in Character Mode enables dialog and communication functions to be carried out
between the PLCs and the following devices:
 Regular peripherals (printer, keyboard-screen, workshop terminal, etc.),
 Specialized peripherals (barcode readers, etc.),
 Calculators (checking, production management, etc.),
 Heterogeneous devices (numerical commands, variable speed controllers, etc),
 External modem.

WARNING
CRITICAL DATA LOSS

Only use communication ports for non-critical data transfers.

Failure to follow these instructions can result in death, serious injury, or equipment
damage.
178 35012430 12/2015

Character Mode Communication Configuration

Section 8.2
Character Mode Communication Configuration

Subject of this Section

This section describes the configuration process used when implementing Character Mode
communication.

What Is in This Section?

This section contains the following topics:

Topic Page

BMX NOM 0200 Character Mode Communication Configuration Screen in a Local Rack 180

BMX NOM 0200 Character Mode Communication Configuration Screen in X80 Drop 183

Accessible Functions in Character Mode 186

Default Values for Character Mode Communication Parameters 187

Message End Detection Parameters in Character Mode 188

Transmission Parameters in Character Mode 190

Signal and Physical Line Parameters in Character Mode 192
35012430 12/2015 179

BMX NOM 0200 Character Mode Communication Configuration Screen in a Local
Rack

General

The following pages provide an introduction to the configuration screen for Character Mode
communication.

Accessing the Configuration Screen

The following table describes the procedure for accessing the configuration screen for Character
Mode communication:

Step Action

1 Open the BMX NOM 0200 sub-directory in the project browser (see page 136).

2 Select the Channel to configure and the Character mode link function on the screen that appears.
180 35012430 12/2015

Character Mode Configuration Screen

The figure below shows the default configuration screen for Character Mode communication on
Channel 0:
35012430 12/2015 181

Description

These zones are used to configure channel parameters. In the online mode, these zones are
accessible. In the offline mode, these zones are accessible but some parameters may not be
accessible and are grayed out.

The following table shows the different zones of the Character Mode communication configuration
screen:

NOTE: In this example, the "Polarization" and "RTS/CTS Delay" zones are grayed out respectively
because an RS232 physical line and RX/TX signals have been chosen.

Key Element Comment

1 Message end
detection
parameters
(see page 188)

These parameters are accessible via two zones:
 Stop on reception,
 Stop on silence.

2 Transmission
parameters
(see page 190)

These parameters are accessible via four zones:
 Transmission speed,
 Data,
 Stop bits,
 Parity.

3 Signal and
physical line
parameters
(see page 192)

These parameters are accessible via four zones:
 Physical line,
 Signals,
 RTS/CTS delay,
 Polarization.
182 35012430 12/2015

BMX NOM 0200 Character Mode Communication Configuration Screen in X80
Drop

General

The following pages provide an introduction to the configuration screen for Character Mode
communication.

Accessing the Configuration Screen

The following table describes the procedure for accessing the configuration screen for Character
Mode communication:

Step Action

1 Open the BMX NOM 0200 sub-directory in the project browser (see page 136).

2 Select the Channel to configure and the Character mode link function on the screen that appears.
35012430 12/2015 183

Character Mode Configuration Screen

The figure below shows the default configuration screen for Character Mode communication on
Channel 0:
184 35012430 12/2015

Description

These zones are used to configure channel parameters. In the online mode, these zones are
accessible. In the offline mode, these zones are accessible but some parameters may not be
accessible and are grayed out.

The following table shows the different zones of the Character Mode communication configuration
screen:

NOTE: In this example, the "Polarization" and "RTS/CTS Delay" zones are grayed out respectively
because an RS232 physical line and RX/TX signals have been chosen.

Key Element Comment

1 Message end
detection
parameters
(see page 188)

These parameters are accessible via two zones:
 Stop on reception,
 Stop on silence.

2 Transmission
parameters
(see page 190)

These parameters are accessible via four zones:
 Transmission speed,
 Data,
 Stop bits,
 Parity.

3 Signal and
physical line
parameters
(see page 192)

These parameters are accessible via four zones:
 Physical line,
 Signals,
 RTS/CTS delay,
 Polarization.
35012430 12/2015 185

Accessible Functions in Character Mode

At a Glance

Function accessibility for configuration of the serial link of a BMX NOM 0200 using Character Mode
protocol depends on the physical link being used.

Accessible Functions

The table below shows the different functions configurable according to the type of serial link used:

X Accessible Function
- Unaccessible Function

Function RS 485 Link (Channel 0 or Channel 1) RS 232 Link (Channel 0)

Transmission speed X X

Data 7 bits
 8 bits

 7 bits
 8 bits

Stop 1 bit
 2 bits

 1 bit
 2 bits

Parity Odd
 Even
 None

 Odd
 Even
 None

Stop on Reception X X

Stop on Silence X X

RX/TX Signals X X

RTS/CTS Signals - X

RTS/CTS delay - X

DTR/DSR/DCD Signals - X

Polarization X -
186 35012430 12/2015

Default Values for Character Mode Communication Parameters

At a Glance

All Character Mode communication parameters have default values.

Default Values

The table below shows the default values for Character Mode communication parameters on
Channel 0 and Channel 1 of BMX NOM 0200 module:

Configuration parameter Value on Channel 0 Value on Channel 1

Physical Line RS232 RS485

Signals RX/TX RX/TX (unique value)

Transmission speed 9600 bits/s 9600 bits/s

Parity Odd Odd

Data Bits 8 bits 8 bits

Stop bits 1 bit 1 bit

Polarization None (unique value) None
35012430 12/2015 187

Message End Detection Parameters in Character Mode

At a Glance

After configuring the communication channel, you need to enter the message end detection
parameters.

These parameters are accessible via two zones:

 The Stop on Reception Zone: stop on reception of a special character.
 The Stop on Silence Zone: stop on silence.

Conditions of Use

Selecting Stop on Silence means that Stop on Reception is deselected and vice versa.

The Stop on Reception Zone

This configuration zone appears on the screen as shown below:

A reception request can be terminated once a specific character is received.

By checking the Stop option, it is possible to configure Stop on Reception to be activated by a
specific end-of-message character:

 CR: enables you to detect the end of the message by a carriage return.
 LF: enables you to detect the end of the message by a line feed.
 Data entry field: enables you to identify an end-of-message character other than the CR or LF

characters, using a decimal value:
 Between 0 and 255 if the data is coded over 8 bits
 Between 0 and 127 if the data is coded over 7 bits

 Character included: enables you to include the end-of-message character in the reception table
of the PLC application.

It is possible to configure two end-of-reception characters. In the window below, the end of
reception of a message is detected by an LF or CR character.
188 35012430 12/2015

The Stop on Silence Zone

This configuration zone appears on the screen as shown below:

This zone enables you to detect the end of a message on reception by the absence of message
end characters over a given time.

Stop on Silence is validated by checking the Stop box. The duration of the silence (expressed in
milliseconds) is set using the data entry field.

NOTE: The available values range from 1 ms to 10000 ms and depend on the transmission speed
selected.
35012430 12/2015 189

Transmission Parameters in Character Mode

At a Glance

After configuring the communication channel, you need to enter the transmission parameters.

These parameters are accessible via four zones:
 The Transmission Speed zone,
 The Data zone,
 The Stop zone,
 The Parity zone.

The Transmission Speed Zone

This configuration zone appears on the screen as shown below:

You can use this zone to select the transmission speed of the Character Mode protocol. The
selected speed has to be consistent with the other devices. The configurable values are 300, 600,
1200, 2400, 4800, 9600, 19200, 57600 and 115200 (only on channel 0 in RS232 mode) bits per
second.

The Data Zone

This configuration zone appears on the screen as shown below:

In this zone, you can specify the size of the data being exchanged on the link.

The available values are:
 7 bits
 8 bits

You are advised to adjust the number of data bits according to the remote device being used.
190 35012430 12/2015

The Stop Zone

This zone looks like this:

The Stop zone allows you to enter the number of stop bits used for communication. You are
advised to adjust the number of stop bits according to the remote device being used.

The configurable values are:
 1 bit
 2 bits

The Parity Zone

This configuration zone appears on the screen as shown below:

This zone enables you to determine whether a parity bit is added or not, as well as its type. You
are advised to adjust parity according to the remote device being used.

The configurable values are:
 Even
 Odd
 None
35012430 12/2015 191

Signal and Physical Line Parameters in Character Mode

At a Glance

After configuring the communication channel, you need to enter the signal and physical line
parameters.

These parameters are accessible via three zones:
 The Physical Line zone
 The Signals zone
 The RTS/CTS Delay zone

The Physical Line Zone

This configuration zone appears on the screen as shown below:

In this zone, you can choose between two types of physical line for the serial port on the
BMX NOM 0200 module:
 The RS 232 line
 The RS 485 line
192 35012430 12/2015

The Signals Zone

This configuration zone appears on the screen as shown below:

In this zone, you can select the signals supported by the RS 232 physical line:
 RX/TX
 RX/TX + RTS/CTS Full Duplex (DTE mode)
 RX/TX + RTS/CTS Half Duplex (DCE mode)
 RX/TX + RTS/CTS + DTR/DSR/DCD

If the RS 485 is configured, the entire zone is grayed out and the default value is RX/TX.

The RTS/CTS Delay Zone

This configuration zone appears on the screen as shown below:

RTS/CTS delay zone is available only when both RS232 and RX/TX+RTS/CTS or
RX/TX+RTS/CTS+DTR/DSR/DCD check boxes are selected. An RTS/CTS hardware flow control
is performed.

The RTS/CTS hardware flow control algorithm aims at preventing the overflow reception buffer (full
duplex).

The RTS/CTS delay corresponds to the time out delay between the RTS rise up and the CTS rise
up. A RTS/CTS delay value different from 0 also corresponds to the maximum waiting time
between each character transmission after the rise of RTS and CTS signals. If the value is set to
0, UARTs can get stuck in a waiting state for an infinite time until the CTS rise up so the value 0 is
used only in particular cases such as looping the RTS signal to the CTS signal in order to check
that all connection cables are operating correctly.

NOTE: The default value is 0 ms.
35012430 12/2015 193

The Polarization zone

This configuration zone shown below is accessible when "RS485" is selected in the "Physical Line"
zone:

This zone gives the capability to choose between three types of configuration for the polarization
on the channel:
 None to use no polarization in case you have your own termination.
 Unique polarization to use a low impedance polarization like in Modbus networks (the goal of

this kind of polarization is to let the master maintain the default state).
 Distributed polarization to use a high polarization impedance (the goal of this kind of

polarization is to let each device contribute to maintain the default state).

Polarization

None

Unique polarization

Distributed polarization
194 35012430 12/2015

Character Mode Communication Programming

Section 8.3
Character Mode Communication Programming

Subject of this Section

This section describes the programming process used when implementing Character Mode
communication.

What Is in This Section?

This section contains the following topics:

Topic Page

Character Mode Communication Functions 196

Detail of Character Mode Expert Mode 204
35012430 12/2015 195

Character Mode Communication Functions

Available Functions

Three specific communication functions are defined for sending and receiving data via a
communication channel in Character Mode:
 PRINT_CHAR sends a character string with a maximum of 16 x 1,024 bytes.
 INPUT_CHAR reads a character string with a maximum of 16 x 1,024 bytes.
 INPUT_BYTE reads byte arrays with a maximum of 16 x 1,024 bytes.

The BMX NOM 0200 can store a total of 16 frames in emission or reception. The frames in buffers
are managed in FIFO order. Over RS-232 lines, they are managed in full duplex mode.

NOTE: For the INPUT_CHAR function, a configured time-out is necessary if the channel is
configured without Stop on silence, to acknowledge the activity bit of the function.

Number of Frames Received in Buffers

When the Modbus port si configured in the Character mode, %MWr.m.c.7 indicates the number of
frames in the BMX NOM 0200 Receive buffer.

This WORD is incremented each time the BMX NOM 0200 received a frame over a RS-232 line.

Example of Programming in FBD

The diagram below represents an example of programming of the PRINT_CHAR and INPUT_CHAR
communication functions in FBD language:
196 35012430 12/2015

Example of Programming in Ladder

The diagram below represents an example of programming of the PRINT_CHAR and INPUT_CHAR
communication functions in the Ladder language:

Example of Programming in ST

The lines of code below represent an example of programming of the PRINT_CHAR and
INPUT_CHAR communication functions in the ST language:

PRINT_CHAR(ADDM(’0.1.0’), ‘string_to_send’, Management_Table);

INPUT_CHAR(ADDM(’0.1.0’), reset_integer_to_0, 10, Management_Table,
character_string_received);

Feature of the INPUT_CHAR function

If the Reset input parameter is set to 1, all buffers are first reset then the module is waits for the
reception of data. Using this feature is advised to start properly a reception by removing old data
from the buffers.
35012430 12/2015 197

Internal Mechanism of the BMX NOM 0200 Module

The data received is stored in 16 cycling buffers in series, each buffer containing 1024 bytes.

The figure below represents this mechanism:

Receiving data with INPUT_CHARor INPUT_BYTE

Frames are retrieved by the application program using the INPUT_CHAR EF to receive a string, or
the INPUT_BYTE EF to receive binary data.

The INPUT_CHAR or INPUT_BYTE EF may be executed before data is received by the module. In
this case, the module waits for data from the line and then sends it to the CPU.

The EF can also be executed when the frame was already received (for example, after checking
the %MWr.m.c.7 with READ_STS). In this case the module immediately sends the buffered frame
to the CPU.

It is also possible to force the module to wait for data from the line by setting the Reset parameter
of the EF to 1. In this case, the data previously buffered are flushed, and the BMX NOM 0200 waits
for new data to be sent to the CPU.

...

Data read is
transfered to

the CPU

x 16
198 35012430 12/2015

Reception mode

The BMX NOM 0200 module can store a maximum of 16 frames.

It does not matter if the end of frame criteria has been defined or not, the BMX NOM 0200 can be
set internally in the Message mode or Raw mode:
 The Message mode is set when an end of frame condition has been specified.

In this mode, the NB parameter of INPUT_CHAR or INPUT_BYTE is the amount of bytes sent to
the CPU.
Special values NB = 0 and NB = 1024 specify the whole frame is sent to the CPU.
Other values of NB specify the number of bytes to be sent to the CPU. If more bytes have been
received before the call to INPUT_CHAR or INPUT_BYTE, the remaining bytes are discarded.

 Raw mode is set when no end of frame condition has been specified. Character mode is a
"frame oriented" protocol. In reception, an end of frame is detected by the first of the following
events:
 a silence duration specified in the Stop on silence zone of the Character Mode

Communication Configuration Screen (see page 180)
 the character 1 or 2 has been received, as specified in the Stop on reception zones of the

Character Mode Communication Configuration Screen (see page 180)
 More than 1024 bytes are received

When an end of frame is detected the internal counter %MWr.m.c.7 is incremented.

Maximum Data Size

The maximum size of a frame sent by the BMX NOM 0200 to the CPU is 1024 byte. However
internally the reception frame size has a maximum size of 1025 byte if an end of frame byte is
configured and this byte is not to be included into the data sent to the CPU.

Zero-size frames

Zero-size frames are discarded. If an end of frame byte is configured, and not requested as part of
the data, a zero size frame received by the BMX NOM 0200 is not sent to the CPU. In this case, if
an end of frame byte is received without any data before it, this frame is discarded and no
information is sent to the CPU.

Receiving several frames during a MAST task

Several frames can be forwarded by the BMX NOM 0200 to the CPU during one MAST task, and
several INPUT_CHAR EF instances may be launched in parallel that address the same
BMX NOM 0200 module. This can be required if a huge flow of data arrives over the serial line.

Cancel and Timeout

Cancel and Timeout are forwarded to the BMX NOM 0200 module. A Timeout condition and
Cancel orders applied to an instance of INPUT_CHAR are forwarded to the BMX NOM 0200
module. The corresponding pending task is removed from the BMX NOM 0200 module task
queue.
35012430 12/2015 199

Internal Mechanism of the BMX NOM 0200 Module: Emission

Use the PRINT_CHAR EF to send data over the serial line of the BMX NOM 0200 module.

NOTE: If several frames have been sent (several PRINT_CHAR instances have been called) and
a silence has been configured, the BMX NOM 0200 module inserts a silence time between each
frame.

It is possible to launch up to 16 PRINT_CHAR requests: they are sent serially with a silence
between each PRINT_CHAR.

Cancelling an Exchange

There are two ways of programming that enable an exchange executed by the PRINT_CHAR and
INPUT_CHAR functions to be cancelled. These are both presented in ST language below:
 Using the CANCEL function:

IF (%MW40.0) THEN
 %MW200:=SHR(%MW40,8;)
 CANCEL(%MW200,%MW185);
END_IF;
%MW40 is the GEST parameter (management table). %MW40.0 corresponds to the activity bit of
the PRINT_CHAR function and is set to 1 when the communication function is active. If this bit
is set to 1, the program carries out the following instructions:
 Moves the %MW40 bits one byte (8 bits) to the right and loads the byte corresponding to the

communication’s exchange number into the %MW200 word.
 Cancels the exchange whose exchange number is contained within the %MW200 word using

the CANCEL function.

 Using the communication function’s cancel bit:
IF (%MW40.0) THEN
 SET(%MW40.1);
 PRINT_CHAR(ADDM(’0.1.0’), ‘string_to_send’, %MW40:4);
END_IF;
%MW40 is the GEST parameter (management table). %MW40.0 corresponds to the activity bit of
the PRINT_CHAR function and is set to 1 when the communication function is active. If this bit
is set to 1, the program sets the %MW40.1 bit, the function cancel bit, to 1. This stops
communication of the PRINT_CHAR function.

NOTE: When using the communication function cancel bit, the function must be called to enable
the cancel bit contained in the function exchange management word (%MW40 in this example).

NOTE: When using the communication function cancel bit, it is possible to cancel a communication
from an animation table. This can be done by simply setting the function cancel bit to 1 (%MW40.1
in this example).

NOTE: The CANCEL function uses a report word for the CANCEL function (%MW185 in this
example).

NOTE: This example of programming concerns the PRINT_CHAR function, but is equally
applicable to the INPUT_CHAR function.
200 35012430 12/2015

Description of ADDM Function Parameters

The following table outlines the various parameters for the ADDM function:

Description of PRINT_CHAR Function Parameters

The following table outlines the various parameters of the PRINT_CHAR function:

Parameter Type Description

IN STRING Address of device on bus or serial link. The syntax of the
address is of the ‘r.m.c.node’ type. The address is made up
of the following parameters:
 r: rack number of the destination system, always = 0.
 m: slot number of the destination system within the rack,

always = 0.
 c: channel number, always = 0 as the serial link of a

remote system is always channel 0.
 node: optional field that may be SYS or empty.

OUT ARRAY [0..7] OF INT Table showing the address of a device. This parameter can
be used as an input parameter for several communication
functions.

Parameter Type Description

ADR ARRAY [0..7] OF INT Address of the message receiving character mode channel
given by the OUT parameter of the ADDM function.

EMIS STRING Character string to be sent.

GEST ARRAY [0..3] OF INT Exchange management table consisting of the following
words:
 Rank 1 word: a word managed by the system and

consisting of two bytes:
 Most significant byte: exchange number
 Least significant byte: activity bit (rank 0) and cancel

bit (rank 1)

 Rank 2 word: a word managed by the system and
consisting of two bytes:
 Most significant byte: operation report
 Least significant byte: communication report

 Rank 3 word: a word managed by the user that defines
the maximum response time using a time base of 100 ms.

 Rank 4 word: a word managed by the user that defines
the length of the exchange:
 If this parameter length is set to 0 then the system

sends the entire string.
 If this parameter length is greater than the length of the

string then the error 16#0A (Insufficient send buffer
size) is returned into the 2nd management word and
no character is sent.
35012430 12/2015 201

Description of INPUT_CHAR Function Parameters

The following table outlines the various parameters of the INPUT_CHAR function:

Description of INPUT_BYTE Function Parameters

The following table outlines the various parameters of the INPUT_BYTE function:

Parameter Type Description

ADR ARRAY [0..7] OF INT Address of the message receiving character mode channel
given by the OUT parameter of the ADDM function.

RAZ INT Reset. This parameter is used to reset the receive memory
of the coupler:
 Value = 0: no memory reset
 Value = 1: memory reset

NOTE: %MW.r.m.7 is reset to 0.

NB INT Length of character string to be received.

GEST ARRAY [0..3] OF INT Exchange management table consisting of the following
words:
 Rank 1 word: a word managed by the system and

consisting of two bytes:
 Most significant byte: exchange number
 Least significant byte: activity bit (rank 0) and cancel

bit (rank 1)

 Rank 2 word: a word managed by the system and
consisting of two bytes:
 Most significant byte: operation report
 Least significant byte: communication report

 Rank 3 word: a word managed by the user which defines
the maximum response time using a time base of 100 ms.

 Rank 4 word: a word managed by the system which
defines the length of the exchange.

RECP STRING Character string received. This string is saved in a character
string.

Parameter Type Comment

ADR ARRAY [0.. 7]
OF INT

For Modicon M340 PLCs:
 Address of the message’s receiving

character mode channel is given by the
ADDM function.

 The syntax of the address is of ADDM
(‘r.m.c.node’)-type. Node is an
optional field that may be SYS or empty (e.g.
ADDM(‘0.0.0.SYS’) equals
ADDM(‘0.0.0’).
202 35012430 12/2015

Minimal Silence Duration

When the "Stop" check box is selected, a silence on the input line is one of the conditions that
determine the detection of a frame end.

The minimal value of this duration is the time corresponding to the transmission of 1.5 characters.
Expressed in number of bits, and depending on the configuration of start and stop bits, the minimal
silence duration is as follows:

Convert the number in right column in time according to the configured speed transmission.

RAZ INT Reset. This parameter is used to reset the
coupler’s receive memory.
 value = 0: no memory reset
 value = 1: memory reset

NOTE: %MW.r.m.7 is reset to 0.

NOTE: On Modicon M340 PLCs, the
INPUT_BYTE EF can be programmed with or
without this parameter.

NB INT Length of the buffer or number of bytes to be
received.
 Value = 0: Message read as soon as it is

available on the channel. Here, a stop
condition must be specified in the
configuration screen.

 Value greater than 0: Specifies the number
of bytes to be read.

NOTE: The default end of message character is
a carriage return (CR).

Parameter Type Comment

Total character length (bit) Minimal silence duration (bit)

8 12

9 12

10 15

11 15
35012430 12/2015 203

Detail of Character Mode Expert Mode

Expert Mode Communication

Expert mode is a set of commands that can be sent to the module to get extra features.

Address Standard Symbol Exchange
Type

Type Meaning

%MWr.m.c.24 CONTROL Explicit INT Command signal, change
protocol.

%MWr.m.c.24.0 Explicit BOOL Erase local counters.

%MWr.m.c.24.4 Explicit BOOL Modify the silence internal
timings (%MW30). This value
update may disturb the
module if it’s working.

%MWr.m.c.24.5 Explicit BOOL Modify the char mode end of
frame byte 0 (%MW26) and
byte 1 (%MW27)
204 35012430 12/2015

%MWr.m.c.24.6 Explicit BOOL Change HALF/FULL
DUPLEX modem
management mode.
 If set simultaneously with

RTS_ON
(%MWr.m.c.24.10
works also with
RTS_OFF
%MWr.m.c.24.11 and
use DTR if .8 or .9 is
used) the half duplex
modem mode is
activated.

 If this bit is set but none of
the RTS/DTR (neither
%MWr.m.c.24.8,
%MWr.m.c.24.9,
%MWr.m.c.24.10,
%MWr.m.c.24.11), the
full duplex mode is
activated.

The %MW26 is used to set the
StartDelay and %MW27 is
used to set the EndDelay. So
the bit %MW24.5 and
%MW24.1 and %MW24.2
cannot be used
simultaneously
NOTE: The user may have to
restore the correct state of
the RTS/DTR signals after
the command has been
accepted.

%MWr.m.c.24.7 Explicit BOOL Save the Modbus slave
address into the FLASH
(%MW25).

%MWr.m.c.24.8 DTR_ON Explicit BOOL Set the DTR signal (positive
voltage)

%MWr.m.c.24.9 DTR_OFF Explicit BOOL Reset the DTR signal
(negative voltage)

%MWr.m.c.24.10 Explicit BOOL Set the RTS signal (positive
voltage)

%MWr.m.c.24.11 Explicit BOOL Reset the RTS signal
(negative voltage)

Address Standard Symbol Exchange
Type

Type Meaning
35012430 12/2015 205

%MWr.m.c.24.12 TO_MODBUS_MASTER Explicit BOOL switch to master mode

%MWr.m.c.24.13 TO_MODBUS_SLAVE Explicit BOOL switch to slave mode

%MWr.m.c.24.14 TO_CHAR_MODE Explicit BOOL Switch to character mode

%MWr.m.c.25 Explicit INT Modbus slave address to
store in FLASH

%MWr.m.c.26 Explicit INT New EOF in char mode
(eq %KW6) if %MW24.5 is
set:
 Bit 0: 1 byte 1 is set

below, 0 no more byte 1
 Bit 1: 1 add the byte 1, 0

do not add the byte 1
 Bit2..7 : must be

null.HIGH BYTE: the end
of frame byte 1

StartDelay if %MW26.6 is set.
Time to wait after the CTS is
OK before to start to send the
frame. It is useful for modem
that requires extra time after
CTS or do not manage the
CTS signal (in this case the
RTS must be connected to
the CTS). This time is in
millisecond, the precision is
about 3ms. Can be
performed only in RS232
mode.

Address Standard Symbol Exchange
Type

Type Meaning
206 35012430 12/2015

%MWr.m.c.27 Explicit INT New EOF in char mode
(eq %KW7) if %MW24.5 is set:
 Bit 0: 1 byte 2 is set

below, 0 no more byte 2
 Bit 1: 1 add the byte 2, 0

do not add the byte 2
 Bit2..7 : must be

null.HIGH BYTE: the end
of frame byte 2

StartDelay if %MW24.6 is set.
Time to wait after having
sent a frame, before to
release the RTS signal to let
enough time to the MODEM
to completely send the frame
before hand-up. This time is
in millisecond, the precision
is about 3ms. Can be
performed only in RS232
mode.

%MWr.m.c.28 Explicit INT Reserved

%MWr.m.c.29 Explicit INT Reserved

%MWr.m.c.30 Explicit INT silence: Inter frame delay in
milliseconds [0..10000]. The
value used depends of the
speed. If the value is smaller
or greater than possible
values, the lower limit or
upper limit is applied, and the
command is accepted. A
value 0 means no silence.

%MWr.m.c.31 Explicit INT Reserved

%MWr.m.c.32 Explicit INT Reserved

Address Standard Symbol Exchange
Type

Type Meaning
35012430 12/2015 207

Sample of Code

if HalfModemChar then

 HalfModemChar:=false;

 %MW0.9.0.24:=16#0440;(* switch to half duplex mode with RTS*)

 %MW0.9.0.26:=12;(* 12ms to wait before sending when CTS raise *)

 %MW0.9.0.27:=9; (* let RTS up 9ms after sending end *)

 write_cmd(%ch0.9.0);(* send command and data to the NOM channel*)

end_if;
208 35012430 12/2015

Debugging Character Mode communication

Section 8.4
Debugging Character Mode communication

Character Mode Communication Debug Screen

General

The Character Mode debug screen is accessible in online mode.

Accessing the Debug Screen

The following table describes the procedure for accessing the debug screen for Character Mode
communication:

Description of the Debug Screen

The debug screen consists of an Error zone and a Signals zone (if RS232).

The Error Zone

The Error zone looks like this:

This zone indicates the number of communication interruptions counted by the module:
 On transmission: corresponds to the number of interruptions on transmission

(image of %MW4 word).
 On reception: corresponds to the number of interruptions on reception (image of %MW5 word).

The Reset Counters button resets both counters to zero.

Step Action

1 Access the configuration screen for Character Mode communication.
(see page 180)

2 Select the "Debug" tab on the screen that appears.
35012430 12/2015 209

The Signals Zone

 This zone is displayed only if RS232 is selected in configuration screen. If RS485 is selected in
configuration screen, this window is not displayed at all.

The Signals zone looks like this:

This zone indicates the activity of the signals:
 CTS RS232: shows the activity of the CTS signal.
 DCD RS232: shows the activity of the DCD signal.
 DSR RS232: shows the activity of the DSR signal.
210 35012430 12/2015

Modicon M340 with Unity Pro

35012430 12/2015
BMX NOM 0200 Module Diagnostics

Chapter 9
BMX NOM 0200 Module Diagnostics
35012430 12/2015 211

BMX NOM 0200 Module Diagnostics

Section 9.1
BMX NOM 0200 Module Diagnostics

Subject of this Section

This section describes the diagnostics aspect in the implementation of a BMX NOM 0200
communication module.

What Is in This Section?

This section contains the following topics:

Topic Page

Diagnostics of a BMX NOM 0200 Module 213

Detailed Diagnostics by Communication Channel 215
212 35012430 12/2015

Diagnostics of a BMX NOM 0200 Module

At a Glance

The module diagnostics function displays anomalies when they occur, classified according to their
category:
 Internal detected error:
 module event

 External event:
 Wiring control (broken-wire, overload or short-circuit)

 Other anomalies:
 inoperative channel
 configuration anomaly
 module missing or off

A detected module error is indicated by a number of LEDs changing to red, such as:
 in the rack-level configuration editor:
 the LED of the rack number
 the LED of the slot number of the module on the rack

 in the module-level configuration editor:
 the Err and I/O LEDs, depending on the type detected error
 the Channel LED in the Channel field
35012430 12/2015 213

Accessing the Module Diagnostic Screen

The table below shows the procedure for accessing the module diagnostic screen.

Module Detected Errors List

The summary table below shows the various detected errors for a communication module:

Step Action

1 Open the module debugging screen.

2 Click on the module reference in the channel zone and select the Fault tab.
Result: The list of module detected errors appears.

Note: It is not possible to access the module diagnostics screen if a configuration error, major breakdown
error, or module missing error is detected. The following message then appears on the screen: " The
module is missing or different from that configured for this position."

Function :
Modbus link

Task:
MAST

0.1 : BMX NOM 0200 x

Bus Module port2 RS2485/232

External faultInternal fault
-Hardware configuration fault

Other fault

Run Err IO

Config Debug Fault

Channel 1

BMX NOM 0200
Channel 0

Detected errors classification Language objects

Internal fault:
 Module detected failure

 %MWr.m.MOD.2.0

External fault:
 Terminal block

 %MWr.m.MOD.2.2

Other fault:
 Faulty channel(s)
 Hardware configuration fault
 Module missing or off

 %MWr.m.MOD.2.1
 %MWr.m.MOD.2.5
 %MWr.m.MOD.2.6
214 35012430 12/2015

Detailed Diagnostics by Communication Channel

At a Glance

The channel Diagnostics function displays detected errors when they occur, classified according
to their category:
 Internal detected error
 self-tests in progress

 External events
 device missing
 device inoperative
 serial-link communication time-out

 Other detected errors
 line tool error
 configuration error
 communication loss
 application error

A detected channel error is indicated in the Debug tab when the LED, located in the Error
column, turns red.

Accessing the Channel Diagnostic Screen

The table below shows the procedure for accessing the channel diagnostic screen.

Step Action

1 Open the module debugging screen.

2
For the inoperative channel, click on the button situated in the Error column.
Result: The list of detected channel errors appears.

Note: Channel diagnostics information can also be accessed by program (instruction
READ_STS).

Function :
Modbus link

Task:
MAST

0.1 : BMX NOM 0200 x

Bus Module port2 RS2485/232

External faultInternal fault
-No device available on the channel

Other fault

Run Err IO

Config Debug Fault

Channel 1

BMX NOM 0200
Channel 0
35012430 12/2015 215

Channel Detected Errors List

The summary table below shows the various detected errors for a configured serial link:

Detected errors classification Language objects

Internal fault:
 Self-tests in progress

 %MWr.m.c.2.4

External fault:
 No device available on the channel
 Device fault
 Time-out error (CTS)

 %MWr.m.c.2.0
 %MWr.m.c.2.1
 %MWr.m.c.2.3

Other fault:
 Line tool error
 Hardware configuration fault
 Problem communicating with the PLC
 Application error

 %MWr.m.c.2.2
 %MWr.m.c.2.5
 %MWr.m.c.2.6
 %MWr.m.c.2.7
216 35012430 12/2015

Modicon M340 with Unity Pro

Language Objects of Communications

35012430 12/2015
Language Objects of Modbus and Character Mode Communications

Chapter 10
Language Objects of Modbus and Character Mode
Communications

Subject of this Chapter

This chapter describes the language objects associated with Modbus and Character Mode
communications and the different ways of using them.

What Is in This Chapter?

This chapter contains the following sections:

Section Topic Page

10.1 Language Objects and IODDTs of Modbus and Character Mode
Communications

218

10.2 General Language Objects and IODDTs for Communication Protocols 226

10.3 Language Objects and IODDTs Associated with Modbus Communication 230

10.4 Language Objects and IODDTs associated with Character Mode
Communication

238

10.5 The IODDT Type T_GEN_MOD Applicable to All Modules 246

10.6 Language Objects and Device DDTs Associated with Modbus Communication 248
35012430 12/2015 217

Language Objects of Communications
Language Objects and IODDTs of Modbus and Character Mode Communications

Section 10.1
Language Objects and IODDTs of Modbus and Character
Mode Communications

Subject of this Section

This section provides an overview of the general points concerning IODDTs and language objects
for Modbus and Character Mode communications.

What Is in This Section?

This section contains the following topics:

Topic Page

Introduction to the Language Objects for Modbus and Character Mode Communications 219

Implicit Exchange Language Objects Associated with the Application-Specific Function 220

Explicit Exchange Language Objects Associated with the Application-Specific Function 221

Management of Exchanges and Reports with Explicit Objects 223
218 35012430 12/2015

Language Objects of Communications
Introduction to the Language Objects for Modbus and Character Mode
Communications

General

The IODDTs are predefined by the manufacturer. They contain input/output language objects
belonging to the channel of an application-specific module.

Modbus and Character Mode communications have three associated IODDTs:

 T_COM_STS_GEN, which applies to communication protocols except Fipio and Ethernet.
 T_COM_MB_BMX, which is specific to Modbus communication.
 T_COM_CHAR_BMX, which is specific to Character Mode communication.

NOTE: IODDT variables can be created in two different ways:
 Using the I/O objects tab (see Unity Pro, Operating Modes).
 Using the Data Editor.

Types of Language Objects

In each IODDT we find a set of language objects that enable us to control them and check that they
are operating correctly.

There are two types of language objects:

 Implicit Exchange Objects: These objects are automatically exchanged on each cycle revolution
of the task associated with the processor.

 Explicit Exchange Objects: These objects are exchanged on the application’s request, using
explicit exchange instructions.

Implicit exchanges concern the status of the processors, communication signals, slaves, etc.

Explicit exchanges are used to define the processor settings and perform diagnostics.
35012430 12/2015 219

Language Objects of Communications
Implicit Exchange Language Objects Associated with the Application-Specific
Function

At a Glance

Use of an integrated, application-specific interface or the addition of a module automatically
enhances the language objects application used to program this interface or module.

These objects correspond to the input/output images and software data of the module or integrated
application-specific interface.

Reminders

The module inputs (%I and %IW) are updated in the PLC memory at the start of the task, or when
the PLC is in RUN or STOP mode.

The outputs (%Q and %QW) are updated at the end of the task, only when the PLC is in RUN mode.

NOTE: When the task is in STOP mode, either of the following are possible, depending on the
configuration selected:
 Outputs are set to fallback position (fallback mode).

 Outputs are maintained at their last value (maintain mode).

Illustration

The diagram below shows the operating cycle of a PLC task (cyclical execution):
220 35012430 12/2015

Language Objects of Communications
Explicit Exchange Language Objects Associated with the Application-Specific
Function

At a Glance

Explicit exchanges are exchanges performed at the user program’s request, using the following
instructions:
 READ_STS (see Unity Pro, I/O Management, Block Library): read status words
 WRITE_CMD (see Unity Pro, I/O Management, Block Library): write command words

These exchanges apply to a set of %MW objects of the same type (status, commands or parameters)
belonging to a channel.

NOTE: These objects provide information about the processor or the module, can be used to
command them (e.g.: switch command) and to define their operating modes (save and restore
adjustment parameters in application).

NOTE: The READ_STS and WRITE_CMD instructions are executed at the same time as the task
that calls them and always correctly. The result of these instructions is available immediately after
their execution.

General Principle for Using Explicit Instructions

The diagram below shows the different types of explicit exchanges that can be made between the
processor and the communication channel:
35012430 12/2015 221

Language Objects of Communications
Managing Exchanges

During an explicit exchange, it is necessary to check its performance in order that data is only taken
into account when the exchange has been correctly executed.

To this end, two types of information are available:
 Information concerning the exchange in progress (see Unity Pro, I/O Management, Block

Library).
 The exchange report (see Unity Pro, I/O Management, Block Library).

The following diagram illustrates the management principle for an exchange:

NOTE: In order to avoid several simultaneous explicit exchanges for the same channel, it is
necessary to test the value of the word EXCH_STS (%MWr.m.c.0) of the IODDT associated to the
channel before to call any EF using this channel.
222 35012430 12/2015

Language Objects of Communications
Management of Exchanges and Reports with Explicit Objects

At a Glance

When data is exchanged between the PLC memory and the module, the module may require
several task cycles to acknowledge this information.

All IODDTs use two words to manage exchanges:
 EXCH_STS (%MWr.m.c.0) : exchange in progress.
 EXCH_RPT (%MWr.m.c.1) : report.

NOTE:
Depending on the localization of the module, the management of the explicit exchanges
(%MW0.0.MOD.0.0 for example) will not be detected by the application:
 for in-rack modules, explicit exchanges are done immediately on the local PLC Bus and are

finished before the end of the execution task, so the READ_STS, for example, is always finished
when the %MW0.0.mod.0.0 bit is checked by the application.

 for remote bus (Fipio for example), explicit exchanges are not synchronous with the execution
task, so the detection is possible by the application.

Illustration

The illustration below shows the different significant bits for managing exchanges:
35012430 12/2015 223

Language Objects of Communications
Description of Significant Bits

Each bit of the words EXCH_STS (%MWr.m.c.0) and EXCH_RPT (%MWr.m.c.1) is associated with
a parameter type:
 Rank 0 bits are associated with the status parameters:
 The STS_IN_PROGR bit (%MWr.m.c.0.0) indicates whether a read request for the status

words is in progress.

 The STS_ERR bit (%MWr.m.c.1.0) specifies whether a read request for the status words is
accepted by the module channel.

 Rank 1 bits are associated with the command parameters:
 The CMD_IN_PROGR bit (%MWr.m.c.0.1) indicates whether command parameters are

being sent to the module channel.
 The CMD_ERR bit (%MWr.m.c.1.1) indicates whether or not the command parameters are

accepted by the module channel.

NOTE: r corresponds to the number of the rack and m to the position of the module in the rack,
while c corresponds to the channel number in the module.

NOTE: Exchange and report words also exist at module level EXCH_STS (%MWr.m.MOD.0) and
EXCH_RPT (%MWr.m.MOD.1) as per T_GEN_MOD type IODDTs.

Explicit Exchange Execution Flags: EXCH_STS

The table below shows the EXCH_STS word (%MWr.m.c.0) explicit exchange control bits:

NOTE: If the module is not present or is disconnected, exchanges using explicit objects
(READ_STS, for example) are not sent to the processor (STS_IN_PROG (%MWr.m.c.0.0) = 0), but
the words are refreshed.

Standard symbol Type Access Meaning Address

STS_IN_PROGR BOOL R Reading of channel status
words in progress

%MWr.m.c.0.0

CMD_IN_PROGR BOOL R Command parameters
exchange in progress

%MWr.m.c.0.1

ADJ_IN_PROGR BOOL R Adjust parameters exchange
in progress

%MWr.m.c.0.2

RECONF_IN_PROGR BOOL R Reconfiguration of the module
in progress

%MWr.m.c.0.15
224 35012430 12/2015

Language Objects of Communications
Explicit Exchange Report: EXCH_RPT

The table below shows the EXCH_RPT (%MWr.m.c.1) word report bits:

Standard symbol Type Access Meaning Address

STS_ERR BOOL R Detected error reading
channel status words
(1 = Detected failure)

%MWr.m.c.1.0

CMD_ERR BOOL R Detected error during a
command parameter
exchange
(1 = Detected failure)

%MWr.m.c.1.1

ADJ_ERR BOOL R Interruptions while exchanging
adjustment parameters
(1 = Detected failure)

%MWr.m.c.1.2

RECONF_ERR BOOL R Interruptions during
reconfiguration of the channel
(1 = Detected failure)

%MWr.m.c.1.15
35012430 12/2015 225

Language Objects of Communications
General Language Objects and IODDTs for Communication Protocols

Section 10.2
General Language Objects and IODDTs for
Communication Protocols

Subject of this Section

This section presents the general language objects and IODDTs that apply to all communication
protocols except Fipio and Ethernet.

What Is in This Section?

This section contains the following topics:

Topic Page

Details of IODDT Implicit Exchange Objects of Type T_COM_STS_GEN 227

Details of IODDT Explicit Exchange Objects of Type T_COM_STS_GEN 228
226 35012430 12/2015

Language Objects of Communications
Details of IODDT Implicit Exchange Objects of Type T_COM_STS_GEN

At a Glance

The following table presents the IODDT implicit exchange objects of type T_COM_STS_GEN
applicable to all communication protocols except Fipio.

Error bit

The table below presents the meaning of the CH_ERROR error bit (%Ir.m.c.ERR):

Standard symbol Type Access Meaning Address

CH_ERROR EBOOL R Communication channel error bit. %Ir.m.c.ERR
35012430 12/2015 227

Language Objects of Communications
Details of IODDT Explicit Exchange Objects of Type T_COM_STS_GEN

At a Glance

This section presents the T_COM_STS_GEN type IODDT explicit exchange objects applicable to all
communication protocols except Fipio and ethernet. It includes the word type objects whose bits
have a specific meaning. These objects are described in detail below.

In this part, the IODDT_VAR1 variable is of type T_COM_STS_GEN.

Observations

In general, the meaning of the bits is given for bit status 1. In specific cases, each bit status is
explained.

Not all bits are used.

Explicit Exchange Execution Flags: EXCH_STS

The table below shows the meaning of channel exchange control bits from the EXCH_STS channel
(%MWr.m.c.0):

Explicit Exchange Report: EXCH_RPT

The table below presents the meaning of the EXCH_RPT exchange report bits (%MWr.m.c.1):

Standard Channel Faults: CH_FLT

The table below shows the meaning of the bits of the status word CH_FLT (%MWr.m.c.2):

Standard symbol Type Access Meaning Address

STS_IN_PROGR BOOL R Read channel status words in progress. %MWr.m.c.0.0

CMD_IN_PROGR BOOL R Command parameter exchange in progress. %MWr.m.c.0.1

Standard symbol Type Access Meaning Address

STS_ERR BOOL R Detected read error for channel status words. %MWr.m.c.1.0

CMD_ERR BOOL R Detected error during command parameter
exchange.

%MWr.m.c.1.1

Standard symbol Type Access Meaning Address

NO_DEVICE BOOL R No devices are working on the channel. %MWr.m.c.2.0

ONE_DEVICE_FLT BOOL R A device on the channel is inoperating. %MWr.m.c.2.1

BLK BOOL R Terminal block is not connected. %MWr.m.c.2.2

TO_ERR BOOL R Time out overtaken (analysis needed). %MWr.m.c.2.3

INTERNAL_FLT BOOL R Detected internal error or channel self-testing. %MWr.m.c.2.4

CONF_FLT BOOL R Different hardware and software configurations. %MWr.m.c.2.5
228 35012430 12/2015

Language Objects of Communications
Reading is performed by the READ_STS (IODDT_VAR1) instruction .

COM_FLT BOOL R Communication analysis needed with the channel. %MWr.m.c.2.6

APPLI_FLT BOOL R Application detected error (adjustment or
configuration).

%MWr.m.c.2.7

Standard symbol Type Access Meaning Address
35012430 12/2015 229

Language Objects of Communications
Language Objects and IODDTs Associated with Modbus Communication

Section 10.3
Language Objects and IODDTs Associated with Modbus
Communication

Subject of this Section

This section presents the language objects and IODDTs associated with Modbus communication.

What Is in This Section?

This section contains the following topics:

Topic Page

Details concerning Explicit Exchange Language Objects for a Modbus Function 231

Details of the IODDTs Implicit Exchange Objects of Types T_COM_MB_BMX and
T_COM_MB_BMX_CONF_EXT

232

Details of the IODDTs Explicit Exchange Objects of Types T_COM_MB_BMX and
T_COM_MB_BMX_CONF_EXT

233

Details of language objects associated with configuration Modbus mode 236
230 35012430 12/2015

Language Objects of Communications
Details concerning Explicit Exchange Language Objects for a Modbus Function

At a Glance

The table below shows the language objects for Modbus communications in master or slave mode.
These objects are not integrated into the IODDTs.

List of Explicit Exchange Objects in Master or Slave mode

The table below shows the explicit exchange objects:

Address Type Access Meaning

%MWr.m.c.4 INT R Number of responses received correctly.

%MWr.m.c.5 INT R Number of responses received with CRC error.

%MWr.m.c.6 INT R Number of responses received with an exception
code in slave mode.

%MWr.m.c.7 INT R Number of messages sent in slave mode.

%MWr.m.c.8 INT R Number of messages sent without response in
slave mode.

%MWr.m.c.9 INT R Number of responses received with a negative
acknowledgement.

%MWr.m.c.10 INT R Number of messages repeated in slave mode.

%MWr.m.c.11 INT R Number of detected character errors.

%MWr.m.c.24.0 BOOL RW Reset of detected error counters.
35012430 12/2015 231

Language Objects of Communications
Details of the IODDTs Implicit Exchange Objects of Types T_COM_MB_BMX and
T_COM_MB_BMX_CONF_EXT

At a Glance

The tables below show the implicit exchange objects of the IODDTs of types T_COM_MB_BMX and
T_COM_MB_BMX_CONF_EXT that are applicable to Modbus serial communications. They differ in
terms of configuration objects availability (see page 235).

CH_ERROR bit

The following table shows the meaning of the error bit CH_ERROR (%Ir.m.c.ERR):

Word object in Modbus Master Mode

The table below shows the meaning of the bit of the INPUT_SIGNALS word (%IWr.m.c.0):

NOTE: When CTS is green in Punit, it means that %IWr.m.c.0.0 is at 1 and that the voltage on
this signal is positive. It is also applicable to DCD and DSR.

Word object in Modbus Slave Mode

The language objects are identical to those of the Modbus master function. Only the objects in the
following table differ.

The table below shows the meaning of the bit of the INPUT_SIGNALS word (%IWr.m.c.0):

Standard symbol Type Access Meaning Address

CH_ERROR EBOOL R Communication channel detected error bit %Ir.m.c.ERR

Standard symbol Type Access Meaning Address

DCD BOOL R Data carrier detect RS232 signal (only applicable to
BMX NOM 0200 module)

%IWr.m.c.0.0

CTS BOOL R Clear to send RS232 signal %IWr.m.c.0.2

DSR BOOL R Data set ready RS232 signal (only applicable to
BMX NOM 0200 module)

%IWr.m.c.0.3

Standard symbol Type Access Meaning Address

LISTEN_ONLY BOOL R Listen only mode %IWr.m.c.0.8
232 35012430 12/2015

Language Objects of Communications
Details of the IODDTs Explicit Exchange Objects of Types T_COM_MB_BMX and
T_COM_MB_BMX_CONF_EXT

At a Glance

This part presents the explicit exchange objects of the IODDTs of types T_COM_MB_BMX and
T_COM_MB_BMX_CONF_EXT that are applicable to Modbus serial and differ in terms of
configuration objects availability (see page 235). It includes the word type objects whose bits
have a specific meaning. These objects are described in detail below.

In this part, the IODDT_VAR1 variable is of the T_COM_STS_GEN type.

Observations

In general, the meaning of the bits is given for bit status 1. In specific cases, each bit status is
explained.

Not all bits are used.

Explicit Exchange Execution Flags: EXCH_STS

The following table shows the meanings of the exchange control bits of the EXCH_STS channel
(%MWr.m.c.0):

Explicit Exchange Report: EXCH_RPT

The table below presents the various meanings of the EXCH_RPT exchange report bits
(%MWr.m.c.1):

Standard symbol Type Access Meaning Address

STS_IN_PROGR BOOL R Reading of channel status words in progress. %MWr.m.c.0.0

CMD_IN_PROGR BOOL R Command parameter exchange in progress. %MWr.m.c.0.1

ADJ_IN_PROGR BOOL R Adjustment parameter exchange in progress (not
applicable to the BMX NOM 0200 module).

%MWr.m.c.0.2

Standard symbol Type Access Meaning Address

STS_ERR BOOL R Detected read error for channel status words. %MWr.m.c.1.0

CMD_ERR BOOL R Anomaly during command parameter exchange. %MWr.m.c.1.1

ADJ_ERR BOOL R Anomaly while exchanging adjustment parameters
(not applicable to the BMX NOM 0200 module).

%MWr.m.c.1.2
35012430 12/2015 233

Language Objects of Communications
Standard Channel Detected Faults: CH_FLT

The following table explains the various meanings of the CH_FLT status word bits (%MWr.m.c.2):

Reading is performed by the READ_STS instruction (IODDT_VAR1).

Specific channel status: %MWr.m.c.3

The table below shows the various meanings of the bits of the PROTOCOL channel status word
(%MWr.m.c.3):

Reading is performed by the READ_STS (IODDT_VAR1) instruction.

Channel command: %MWr.m.c.24

The table below shows the various meanings of the bits of the CONTROL (%MWr.m.c.24) word:

The command is carried out with the WRITE_CMD (IODDT_VAR1) instruction.

Standard symbol Type Access Meaning Address

NO_DEVICE BOOL R No devices are working on the channel. %MWr.m.c.2.0

ONE_DEVICE_FLT BOOL R A device on the channel is inoperating. %MWr.m.c.2.1

BLK BOOL R Terminal block is not connected. %MWr.m.c.2.2

TO_ERR BOOL R Time out overtaken (analysis needed). %MWr.m.c.2.3

INTERNAL_FLT BOOL R Internal detected error or channel self-testing. %MWr.m.c.2.4

CONF_FLT BOOL R Different hardware and software configurations. %MWr.m.c.2.5

COM_FLT BOOL R Communication analysis needed with the channel. %MWr.m.c.2.6

APPLI_FLT BOOL R Application detected error (adjustment or
configuration error).

%MWr.m.c.2.7

Standard symbol Type Access Meaning Address

PROTOCOL INT R Byte 0 = 16#06 for Modbus master function. %MWr.m.c.3

PROTOCOL INT R Byte 0 = 16#07 for Modbus slave function. %MWr.m.c.3

Standard symbol Type Access Meaning Address

DTR_ON BOOL R/W Set the Data Terminal Ready signal. %MWr.m.c.24.8

DTR_OFF BOOL R/W Reset the Data Terminal Ready signal. %MWr.m.c.24.9

TO_MODBUS_MASTER BOOL R/W Change from Character mode or Modbus Slave
mode to Modbus Master mode.

%MWr.m.c.24.12

TO_MODBUS_SLAVE BOOL R/W Change from Character mode or Modbus Master
mode to Modbus Slave mode.

%MWr.m.c.24.13

TO_CHAR_MODE BOOL R/W Change from Modbus to Character Mode. %MWr.m.c.24.14
234 35012430 12/2015

Language Objects of Communications
For further information about how to change protocols, you can refer to protocol changes
(see page 254).

External Configuration Objects of Type T_COM_MB_BMX_CONF_EXT: %MWr.m.c.24.7 and
%MWr.m.c.25

The table below shows the meaning of the CONTROL (%MWr.m.c.24.7) bit and of the
CONTROL_DATA (%MWr.m.c.25) word that are specifically intended for the BMX NOM 0200
module programming:

Standard symbol Type Access Meaning Address

SAVE_CTRL_DATA BOOL R/W Save the control data into the FLASH memory %MWr.m.c.24.7

CONTROL_DATA BOOL R/W Modbus slave address to store in the FLASH
memory.

%MWr.m.c.25
35012430 12/2015 235

Language Objects of Communications
Details of language objects associated with configuration Modbus mode

At a Glance

The following tables present all configuration language objects for communication Modbus mode.
These objects are not integrated in the IODDTs, and may be displayed by the application program.

List of explicit exchange objects for Master mode

The table below shows the explicit exchange objects.

Address Type Access Meaning

%KWr.m.c.0 INT R The byte 0 of this word corresponds to the type:
 Value 6 corresponds to Master
 Value 7 corresponds to Slave

%KWr.m.c.1 INT R The byte 0 of this word corresponds to the
transmission speed. This byte can take several
values:
 Value -2 (0xFE) corresponds to 300 bits/s
 Value -1 (0xFF) corresponds to 600 bits/s
 Value 0 (0x00) corresponds to 1200 bits/s
 Value 1 (0x01) corresponds to 2400 bits/s
 Value 2 (0x02) corresponds to 4800 bits/s
 Value 3 (0x03) corresponds to 9600 bits/s
 Value 4 (0x04) corresponds to 19200 bits/s

(default value)
 Value 5 (0x05) corresponds to 38400 bits/s
 Value 6 (0x06) corresponds to 57600 bits/s

(applicable to BMX NOM 0200 module only)
 Value 7 (0x07) corresponds to 115200 bits/s

(applicable to BMX NOM 0200 module only)

The byte 1 of this word corresponds to the format:
 Bit 8: number of bits (1 = 8 bits (RTU), 0 =

7 bits (ASCII))
 bit 9 = 1: parity management (1 = with, 0 =

without)
 Bit 10: parity Type (1 = odd, 0 = even)
 Bit 11: number of stop bits (1 = 1 bit, 0 = 2 bits)
 Bit 13: physical line (1 = RS232, 0 = RS485)
 Bit 14: DTR/DSR/DCD modem signals

(applicable to BMX NOM 0200 module only
and for RS232 physical line only). If this bit is
set to 1, modem signals are managed.

 Bit 15 : RTS/CTS hardware flow management
signals. If RS232 is selected this bit can take 2
different values: 0 for RX/TX and 1 for RX/TX
+ RTS/CTS. If RS485 is selected the default
value is 0 and corresponds to RX/TX.
236 35012430 12/2015

Language Objects of Communications
List of explicit exchange objects for Slave mode

The language objects for the Modbus slave function are identical to those of the Modbus master
function. The only difference is for the following objects:.

%KWr.m.c.2 INT R Delay between frames (in RTU mode only): value
in ms from 2 to 10000 ms (depends on the
transmission speed and format selected). Its
default value is 2 ms if the default box is checked.
10 s corresponds to infinite wait.

%KWr.m.c.3 INT R In Modbus Master Mode this object corresponds
to the answer delay in ms from 10 ms to 1000 ms.
100 ms is the value by default. 10 s corresponds
to infinite wait.

%KWr.m.c.4 INT R Only available in Modbus Master mode. Byte 0 of
this word is the number of retries from 0 to 15. The
value by default is 3.

%KWr.m.c.5 INT R If RS232 is selected this word corresponds to
RTS/CTS delay time in hundreds of ms from 0 to
100. If RS485 is selected the default value is 0.

Address Type Access Meaning

Address Type Access Meaning

%KWr.m.c.3 INT R In Modbus Slave Mode the byte 0 of this object
corresponds to the slave number [0/1, 247]. For
the BMX NOM 0200 module, the value 0 means
that the slave number is coded in the FLASH
memory

%KWr.m.c.4 INT R Used only in Modbus Master mode.
35012430 12/2015 237

Language Objects of Communications
Language Objects and IODDTs associated with Character Mode Communication

Section 10.4
Language Objects and IODDTs associated with Character
Mode Communication

Subject of this Section

This section presents the language objects and IODDTs associated with Character Mode
communication.

What Is in This Section?

This section contains the following topics:

Topic Page

Details concerning Explicit Exchange Language Objects for Communication in Character Mode 239

Details of IODDT Implicit Exchange Objects of Type T_COM_CHAR_BMX 240

Details of IODDT Explicit Exchange Objects of Type T_COM_CHAR_BMX 241

Details of language objects associated with configuration in Character mode 244
238 35012430 12/2015

Language Objects of Communications
Details concerning Explicit Exchange Language Objects for Communication in
Character Mode

At a Glance

The following tables show all configuration language objects for communication in Character
Mode. These objects are not integrated into the IODDTs.

List of Explicit Exchange Objects

The table below shows the explicit exchange objects:

Address Type Access Meaning

%MWr.m.c.4 INT R Anomaly in transmitted characters.

%MWr.m.c.5 INT R Anomaly in received characters.

%MWr.m.c.24.0 BOOL RW Resets error counters when it is set to 1.

%QWr.m.c.0 = 16#DEAD INT RW Reboot the BMX NOM 0200.
35012430 12/2015 239

Language Objects of Communications
Details of IODDT Implicit Exchange Objects of Type T_COM_CHAR_BMX

At a Glance

The tables below show the implicit exchange objects of the IODDT of the T_COM_CHAR_BMX type
that are applicable to Character Mode communication.

Error bit

The following table shows the meaning of the error bit CH_ERROR (%Ir.m.c.ERR):

Signal object on input

The table below shows the meaning of the bit of the INPUT_SIGNALS word (%IWr.m.c.0):

NOTE: When CTS is green in Punit, it means that %IWr.m.c.0.0 is at 1 and that the voltage on
this signal is positive. It is also appliable to DCD and DSR.

Standard symbol Type Access Meaning Address

CH_ERROR EBOOL R Communication channel error bit. %Ir.m.c.ERR

Standard symbol Type Access Meaning Address

DCD BOOL R Data Carrier Detect RS232 signal (applicable to
BMX NOM 0200 module only).

%IWr.m.c.0.0

CTS BOOL R Clear to send RS232 signal. %IWr.m.c.0.2

DSR BOOL R Data Set ready RS232 signal (applicable to
BMX NOM 0200 module only).

%IWr.m.c.0.3
240 35012430 12/2015

Language Objects of Communications
Details of IODDT Explicit Exchange Objects of Type T_COM_CHAR_BMX

At a Glance

This part presents the explicit exchange objects of the IODDT of the T_COM_CHAR_BMX type that
are applicable to Character Mode communication. It includes the word type objects whose bits
have a specific meaning. These objects are described in detail below.

In this part, the IODDT_VAR1 variable is of the T_COM_STS_GEN type.

Observations

In general, the meaning of the bits is given for bit status 1. In specific cases, each bit status is
explained.

Not all bits are used.

Explicit Exchange Execution Flag: EXCH_STS

The following table shows the meanings of the exchange control bits of the EXCH_STS channel
(%MWr.m.c.0) :

Explicit Exchange Report: EXCH_RPT

The table below presents the meaning of the EXCH_RPT exchange report bits (%MWr.m.c.1):

Standard symbol Type Access Meaning Address

STS_IN_PROGR BOOL R Read channel status words in progress. %MWr.m.c.0.0

CMD_IN_PROGR BOOL R Command parameter exchange in progress. %MWr.m.c.0.1

ADJ_IN_PROGR BOOL R Adjustment parameter exchange in progress (not
applicable to BMX NOM 0200 module).

%MWr.m.c.0.2

Standard symbol Type Access Meaning Address

STS_ERR BOOL R Detected read error for channel status words. %MWr.m.c.1.0

CMD_ERR BOOL R Anomaly during command parameter exchange. %MWr.m.c.1.1

ADJ_ERR BOOL R Anomaly while exchanging adjustment parameters
(not applicable to the BMX NOM 0200 module).

%MWr.m.c.1.2
35012430 12/2015 241

Language Objects of Communications
Standard Channel Detected Faults, CH_FLT

The following table explains the various meanings of the CH_FLT status word bits (%MWr.m.c.2) :

Reading is performed by the READ_STS instruction (IODDT_VAR1).

Specific Channel Status, %MWr.m.c.3

The table below shows the various meanings of the bits of the PROTOCOL (%MWr.m.c.3) channel
status word:

Reading is performed by the READ_STS (IODDT_VAR1) instruction.

%MWr.m.c.24 Channel Command

The table below shows the various meanings of the bits of the CONTROL (%MWr.m.c.24) word:

The command is carried out with the WRITE_CMD (IODDT_VAR1) instruction.

For further information about how to change protocols, you can refer to protocol changes
(see page 254).

Standard symbol Type Access Meaning Address

NO_DEVICE BOOL R No device is working on the channel. %MWr.m.c.2.0

ONE_DEVICE_FLT BOOL R A device on the channel is inoperating. %MWr.m.c.2.1

BLK BOOL R Terminal block is not connected. %MWr.m.c.2.2

TO_ERR BOOL R Time out overtaken (analysis needed). %MWr.m.c.2.3

INTERNAL_FLT BOOL R Internal detected error or channel self-testing. %MWr.m.c.2.4

CONF_FLT BOOL R Different hardware and software configurations. %MWr.m.c.2.5

COM_FLT BOOL R Communication analysis is needed with the PLC. %MWr.m.c.2.6

APPLI_FLT BOOL R Application detected error (adjustment or
configuration error).

%MWr.m.c.2.7

Standard symbol Type Access Meaning Address

PROTOCOL INT R Byte 0 = 16#03 for Character Mode function. %MWr.m.c.3

Standard symbol Type Access Meaning Address

DTR_ON BOOL R/W Set the Data Terminal Ready signal. %MWr.m.c.24.8

DTR_OFF BOOL R/W Reset the Data Terminal Ready signal. %MWr.m.c.24.9
242 35012430 12/2015

Language Objects of Communications
%QWr.m.c.0 Word Object

The table below shows the meaning of the bit 0 of %QWr.m.c.0 word:

Standard symbol Type Access Meaning Address

STOP_EXCH BOOL R/W Stop all exchanges on rising edge (available on the
BMX NOM 0200 module only).

%QWr.m.c.0.0
35012430 12/2015 243

Language Objects of Communications
Details of language objects associated with configuration in Character mode

At a Glance

The following tables present all configuration language objects for communication Character
mode. These objects are not integrated in the IODDTs, and may be displayed by the application
program.

List of explicit exchange objects for Character mode

The table below shows the explicit exchange objects.

Address Type Access Meaning

%KWr.m.c.0 INT R The byte 0 of this word corresponds to the type. Value 3
corresponds to Character Mode.

%KWr.m.c.1 INT R The byte 0 of this word corresponds to the transmission speed.
This byte can take several values:
 Value -2 (0xFE) corresponds to 300 bits/s
 Value -1 (0xFF) corresponds to 600 bits/s
 Value 0 (0x00) corresponds to 1200 bits/s
 Value 1 (0x01) corresponds to 2400 bits/s
 Value 2 (0x02) corresponds to 4800 bits/s
 Value 3 (0x03) corresponds to 9600 bits/s (default value)
 Value 4 (0x04) corresponds to 19200 bits/s
 Value 5 (0x05) corresponds to 38400 bits/s
 Value 6 (0x06) corresponds to 57600 bits/s (can be taken

only for BMX NOM 0200 module)
 Value 7 (0x07) corresponds to 115200 bits/s (can be taken

only for BMX NOM 0200 module)

The byte 1 of this word corresponds to the format:
 Bit 8: number of bits (1 = 8 bits (RTU), 0 = 7 bits (ASCII))
 bit 9 = 1: parity management (1 = with, 0 = without)
 Bit 10: parity Type (1 = odd, 0 = even)
 Bit 11: number of stop bits (1 = 1 bit, 0 = 2 bits)
 Bit 13: physical line (1 = RS232, 0 = RS485)
 Bit 14: DTR/DSR/DCD modem signals. For BMX NOM 0200

module and if RS232 is selected, this bit can take 2 different
values: 1 means that modem signals are managed, 0 means
that they are not (default value for BMX P34 or if RS485 is
selected)

 Bit 15 : RTS/CTS hardware flow management signals. If
RS232 is selected this bit can take 2 different values: 0 for
RX/TX and 1 for RX/TX + RTS/CTS. If RS485 is selected the
default value is 0 and corresponds to RX/TX

%KWr.m.c.2 INT R Entered value in ms of stop on silence (depends on the
transmission speed and format selected). Value 0 means no
silence detection.
244 35012430 12/2015

Language Objects of Communications
%KWr.m.c.3 INT R This word correcponds to the polarization type:
 Value 0 on both bit 14 and bit 15 corresponds to no

polarization (This is the default value for BMX P34 or if
RS232 is selected)

 Bit 14: value 1 corresponds to low impedance (Modbus like)
polarization and can be taken only for BMX NOM 0200
module and if RS485 is selected

 Bit 15: value 1 corresponds to high impedance polarization
and can be taken only for BMX NOM 0200 module and if
RS485 is selected

%KWr.m.c.5 INT R This word corresponds to RTS/CTS delay time in hundreds of
ms from 0 to 100 if RS232 is selected. If RS485 is selected the
default value is 0.

%KWr.m.c.6 INT R Bit 0 of Byte 0 can have 2 values:
 value 1 corresponds to the stop checkbox in the Stop on

reception area for character 1 when checked
 value 0 corresponds to the stop checkbox in the Stop on

reception area for character 1 when unchecked

Bit 1 of Byte 0 can have 2 values:
 value 1 corresponds to the Character Included checkbox in

the Stop on reception area for character 1 when checked
 value 0 corresponds to the Character Included checkbox in

the Stop on reception area for character 1 when unchecked

Byte 1 of this word corresponds to the entered value of stop on
reception of character 1 from 0 to 255.

%KWr.m.c.7 INT R Bit 0 of Byte 0 can have 2 values:
 value 1 corresponds to the stop checkbox in the Stop on

reception area for character 2 when checked
 value 0 corresponds to the stop checkbox in the Stop on

reception area for character 2 when unchecked

Bit 1 of Byte 0 can have 2 values:
 value 1 corresponds to the Character Included checkbox in

the Stop on reception area for character 2 when checked
 value 0 corresponds to the Character Included checkbox in

the Stop on reception area for character 2 when unchecked

Byte 1 of this word corresponds to the entered value of stop on
reception of character 2 from 0 to 255.

Address Type Access Meaning
35012430 12/2015 245

Language Objects of Communications
The IODDT Type T_GEN_MOD Applicable to All Modules

Section 10.5
The IODDT Type T_GEN_MOD Applicable to All Modules

Details of the Language Objects of the IODDT of Type T_GEN_MOD

Introduction

The modules of Modicon M340 and X80 PLCs have an associated IODDT of type T_GEN_MOD.

Observations

In general, the meaning of the bits is given for bit status 1. In specific cases an explanation is given
for each status of the bit.

Some bits are not used.

List of Objects

The table below presents the objects of the IODDT.

Standard Symbol Type Access Meaning Address

MOD_ERROR BOOL R Module detected error bit %Ir.m.MOD.ERR

EXCH_STS INT R Module exchange control word %MWr.m.MOD.0

STS_IN_PROGR BOOL R Reading of status words of the module in
progress

%MWr.m.MOD.0.0

EXCH_RPT INT R Exchange report word %MWr.m.MOD.1

STS_ERR BOOL R Event when reading module status words %MWr.m.MOD.1.0

MOD_FLT INT R Internal detected errors word of the module %MWr.m.MOD.2

MOD_FAIL BOOL R module inoperable %MWr.m.MOD.2.0

CH_FLT BOOL R Inoperative channel(s) %MWr.m.MOD.2.1

BLK BOOL R Terminal block incorrectly wired %MWr.m.MOD.2.2

CONF_FLT BOOL R Hardware or software configuration anomaly %MWr.m.MOD.2.5

NO_MOD BOOL R Module missing or inoperative %MWr.m.MOD.2.6

EXT_MOD_FLT BOOL R Internal detected errors word of the module (Fipio
extension only)

%MWr.m.MOD.2.7

MOD_FAIL_EXT BOOL R Internal detected error, module unserviceable
(Fipio extension only)

%MWr.m.MOD.2.8

CH_FLT_EXT BOOL R Inoperative channel(s) (Fipio extension only) %MWr.m.MOD.2.9

BLK_EXT BOOL R Terminal block incorrectly wired (Fipio extension
only)

%MWr.m.MOD.2.10
246 35012430 12/2015

Language Objects of Communications
CONF_FLT_EXT BOOL R Hardware or software configuration anomaly
(Fipio extension only)

%MWr.m.MOD.2.13

NO_MOD_EXT BOOL R Module missing or inoperative (Fipio extension
only)

%MWr.m.MOD.2.14

Standard Symbol Type Access Meaning Address
35012430 12/2015 247

Language Objects of Communications
Language Objects and Device DDTs Associated with Modbus Communication

Section 10.6
Language Objects and Device DDTs Associated with
Modbus Communication

Communication Device DDT Names

Introduction

This topic describes the Unity Pro Communication Device DDT.

The default device DDT name contains the following information:
 module Input and or output (X symbol)
 module insertion number (# symbol)

Example: MOD_COM_X_#

The default device DDT type contains the following information:
 platform with:
 M for Modicon M340 or Modicon M580

 device type (COM for discrete)
 function (NOM for BMX NOM 0200)
 direction:
 IN
 OUT

List of Implicit Device DDT

The table below shows the list of devices supported by Modicon M340 and Modicon M580, plus
their corresponding device DDT name and type:

Implicit Device DDT Description

The following table shows the T_M_COM_NOM status word bits:

Device DDT Name Device DDT Type Modicon M340/M580 Devices

MOD_NOM_# T_M_COM_NOM BMX NOM 0200.3

Standard Symbol Type Meaning Access

MOD_HEALTH BOOL 0 = the module has a detected error read

1 = the module is operating
correctly
248 35012430 12/2015

Language Objects of Communications
The following table shows the T_M_COM_NOM_CH[0...1] status word bits:

Explicit Device DDT Instances Description

Explicit exchanges (Read Status) - only applicable to Modicon M340 and Modicon M580 I/O
channels - are managed with READ_STS_QX EFB instance.
 Targeted channel address (ADDR) can be managed with ADDMX (see Unity Pro,

Communication, Block Library) EF (connect ADDMX OUT to ADDR)
 READ_STS_QX (see Unity Pro, I/O Management, Block Library) output parameter (STATUS)

can be connected to a "T_M_xxx_yyy_CH_STS" DDT instance (variable to be created
manually), where:
 xxx represents the device type

 yyy represents the function

Example: T_M_COM_NOM_CH_STS

The following table shows the T_M_COM_NOM_CH_STS status word bits:

MOD_FLT BYTE internal detected errors byte of the
module

read

COM_CH ARRAY [0...1] of T_M_COM_NOM_CH array of structure

Standard Symbol Type Meaning Access

Standard Symbol Type Bit Meaning Access

FCT_TYPE WORD 0 = channel is not used read

1 = channel is used

3 = Character mode

7 = MODBUS slave

CH_HEALTH BOOL 0 = the channel has a detected error read

1 = the channel is operating correctly

INPUT_SIGNALS [INT] DCD BOOL 0 Data Carrier Detect RS232 signal
(applicable to BMX NOM 0200 module
only)

read

CTS BOOL 2 clear to send RS232 signal read

DSR BOOL 3 Data Set ready RS232 signal
(applicable to BMX NOM 0200 module
only)

read

COMMAND [INT] STOP_EXCH BOOL 0 rising edge at 1: All exchanges in
progress are stopped.

read / write

Type Type Access

STRUCT T_M_COM_NOM_CH_STS
35012430 12/2015 249

Language Objects of Communications
The following table shows the T_M_COM_NOM_CH_STS structure status word bits:

Standard Symbol Type Bit Meaning Access

CH_FLT [INT] NO_DEVICE BOOL 0 no device is working on the channel read

ONE_DEVICE_FLT BOOL 1 inoperable device on the channel read

BLK BOOL 2 terminal block fault detected (not
connected)

read

TO_ERR BOOL 3 time out detected error (defective wiring) read

INTERNAL_FLT BOOL 4 internal detected error or channel self-
testing

read

CONF_FLT BOOL 5 configuration detected fault: different
hardware and software configurations

read

COM_FLT BOOL 6 problem communicating with the PLC read

APPLI_FLT BOOL 7 application detected error (adjustment or
configuration detected error

read

PROTOCOL BYTE 6 for Modbus Master, 3 for character mode read

ADDRESS BYTE slave address read
250 35012430 12/2015

Modicon M340 with Unity Pro

Software Implementation: Dynamic Protocol Switching

35012430 12/2015
Dynamic Protocol Switching

Chapter 11
Dynamic Protocol Switching

Subject of this Section

This chapter provides an introduction to dynamic switching between Modbus and Character Mode
protocols.

What Is in This Chapter?

This chapter contains the following topics:

Topic Page

Changing Protocol with BMX P34 1000/2000/2010/20102/2020 Processors 252

Changing Protocol with the BMX NOM 0200 Module 254
35012430 12/2015 251

Software Implementation: Dynamic Protocol Switching
Changing Protocol with BMX P34 1000/2000/2010/20102/2020 Processors

General

This part describes how to change the protocol used by a CPU serial communication using the
WRITE_CMD(IODDT_VAR1) command. This command can be used to switch between the
following three protocols:
 Modbus Slave
 Modbus Master
 Character Mode

NOTE: IODDT_VAR1 variable must be a T_COM_MB_BMX type.

Changing Protocol: The Principle

You must create first an IODDT variable linked to the processor’s serial channel, then set to 1 the
bit of word IODDT_VAR1.CONTROL (%MWr.m.c.24) that corresponds to the change of protocol
desired:
 TO_MODBUS_MASTER (Bit 12): Current protocol is changed to Modbus Master.
 TO_MODBUS_SLAVE (Bit 13): Current protocol is changed to Modbus Slave.
 TO_CHAR_MODE (Bit 14): Current protocol is changed to Character Mode.

NOTE: IODDT_VAR1.CONTROL (%MWr.m.c.24) is part of the IODDT variable IODDT_VAR1.

Afterwards, apply the WRITE_CMD instruction to the IODDT variable linked to the processor’s serial
channel.

The diagram below shows the protocol changes to be made according to the bits of the
IODDT_VAR1.CONTROL (%MWr.m.c.24) word set to 1:

NOTE: In order for changes to be made from one protocol to another, the processor must initially
be configured to Modbus Slave mode.
252 35012430 12/2015

Software Implementation: Dynamic Protocol Switching
Uses

Three protocol changes are used:
 Transfer to Modbus Master: The protocol change is a two-stage process:
 Transfer from the Modbus Slave configuration to the Modbus Master configuration
 Return to the initial Modbus Slave configuration

The aim of Modbus Master configuration is to send information about an event to another PLC.
When a change is made from Modbus Slave configuration to Modbus Master configuration,
transmission, signal and physical line parameters remain the same. Only the values of the
following parameters specific to Modbus Master configuration are changed:
 The Delay Between Frames is set to its default value, which depends on transmission speed.
 Answer delay is set to 3,000 ms
 Number of retries set to 3

 Transfer to Character Mode: This protocol change is a two-stage process:
 Transfer from Modbus Slave configuration to Character Mode configuration
 Return to the initial Modbus Slave configuration.

The aim of Character Mode configuration is to communicate with a private protocol (a modem,
for instance). When a change is made from Modbus Slave configuration to Character Mode
configuration, transmission, signal and physical line parameters remain the same. Only the
message end parameter specific to Character Mode is set to stop on silence with a timeout of
1000 ms.

 Transfer to the Character Mode and Modbus Master protocols: This protocol change is a three-
stage process:
 Transfer from Modbus Slave configuration to Character Mode configuration.

 Transfer from Character Mode configuration to Modbus Master configuration.
 Return to the initial Modbus Slave configuration.

The aim of Character Mode configuration is to communicate with a private protocol (a modem,
for instance). Once the exchange has finished, the user switches to the Modbus Master
configuration in order to send information about an event to another PLC. Once the message
has been sent, the user returns to the initial Modbus Slave configuration.

NOTE: All three cases, the default configuration remains Modbus Slave.

Cold and Warm Starts

Changes in protocol are not affected by the %S0 and %S1 bits (the bits set to 1 during a cold and
warm start respectively). However, a cold or warm start of the PLC will configure the serial port to
its default values or to values programmed into the application.
35012430 12/2015 253

Software Implementation: Dynamic Protocol Switching
Changing Protocol with the BMX NOM 0200 Module

General

This part describes how to change the protocol used by a BMX NOM 0200 serial communication
using the WRITE_CMD(IODDT_VAR1) command.

This command can be used to switch between the following three protocols:
 Modbus Slave
 Modbus Master
 Character Mode

NOTE: IODDT_VAR1 variable must be either a T_COM_MB_BMX or a
T_COM_MB_BMX CONF EXT type.

Changing Protocol: The Principle

You must create first an IODDT variable linked to the serial channel, then set to 1 the bit of word
IODDT_VAR1.CONTROL (%MWr.m.c.24) that corresponds to the change of protocol desired:
 TO_MODBUS_MASTER (Bit 12): Current protocol is changed to Modbus Master.
 TO_MODBUS_SLAVE (Bit 13): Current protocol is changed to Modbus Slave.
 TO_CHAR_MODE (Bit 14): Current protocol is changed to Character Mode.

NOTE: A single bit can be set to 1 at a time: setting several bits to 1 will result in an error.

NOTE: IODDT_VAR1.CONTROL (%MWr.m.c.24) is part of the IODDT variable IODDT_VAR1.

Afterwards, apply the WRITE_CMD instruction to the IODDT variable linked to the serial channel.

NOTE: Be careful that two masters (on the same bus) do not send requests simultaneously
otherwise the requests are lost and each report will have a bad result which could be 16#0100
(request could not be processed) or 16#ODFF (slave is not present).

The diagram below shows the protocol changes to be made according to the bits of the
IODDT_VAR1.CONTROL (%MWr.m.c.24) word set to 1:
254 35012430 12/2015

Software Implementation: Dynamic Protocol Switching
Uses

Three protocol changes are used:
 Transfer from Modbus Slave to Modbus Master:

The aim of Modbus Master configuration is to send information about an event to another PLC.
When a change is made from Modbus Slave configuration to Modbus Master configuration,
transmission, signal and physical line parameters remain the same. Only the values of the
following parameters specific to Modbus Master configuration are changed:
 The Delay Between Frames is set to its default value, which depends on transmission speed.
 Answer delay is set to 3s
 Number of retries set to 0

 Transfer from Modbus Slave/Master to Character Mode
Switching to Character Mode is used to send AT commands to a modem. When a change is
made from Modbus configuration to Character Mode configuration, transmission, signal and
physical line parameters remain the same. Only the message end detection parameter specific
to Character Mode is set to stop on reception of the x0d ending character.

 Transfer from Character Mode to Modbus Master and to Modbus Slave:
The aim of Character Mode configuration is to communicate with a private protocol (a modem,
for instance). Once the exchange has finished, the user switches to the Modbus Master
configuration (with the answer delay set to 3s and the number of retries set to 0) in order to send
information about an event to another PLC. Once the message has been sent, the user returns
to the Modbus Slave configuration: the slave number is set to the value stored in the FLASH
memory or to 248 if none.

Cold and Warm Starts

Changes in protocol are not affected by the %S0 and %S1 bits (the bits set to 1 during a cold and
warm start respectively). However, a cold or warm start of the PLC will configure the serial port to
its default values or to values programmed into the application.

NOTE: The default configuration of the module is the following: to be easily configurable by a
computer like a PC, the channel 0 is configured in RS232 slave mode, and the channel 1 in RS485
mode. Other parameters are: 19200 bauds, RTU, even, 1 stop bit, no flow control, 1,75ms as
default frame delay, slave number 248.
35012430 12/2015 255

Software Implementation: Dynamic Protocol Switching
256 35012430 12/2015

Modicon M340 with Unity Pro

BMX NOM 0200.4

35012430 12/2015
Quick Start: BMX NOM 0200.4

Part IV
Quick Start: BMX NOM 0200.4

Overview

This part describe how to configure the BMX NOM 0200.4 module as a Modbus RS-485 RTU slave
in a modicon X80 drop over a Quantum PLC.

NOTE: For details on how to install and configure the BMX NOM 0200.4 in an M580 RIO drop,
refer to Configuring the BMX NOM 0200.4 Module in an X80 Drop (see Modicon M580, RIO
Modules, Installation and Configuration Guide).

What Is in This Part?

This part contains the following chapters:

Chapter Chapter Name Page

12 Overview 259

13 Configuration in Unity Pro 265
35012430 12/2015 257

BMX NOM 0200.4
258 35012430 12/2015

Modicon M340 with Unity Pro

Overview

35012430 12/2015
Overview

Chapter 12
Overview

Prerequisites

To configure the BMX NOM 0200.4, you have to:
 Use the following firmware versions:
 BMX CRA 312 10: SV V2.10
 BMX NOM 0200: SV V1.4

 Interlink a 140 NOC 78• 00 to the Quantum 140 CRP 312 00

What Is in This Chapter?

This chapter contains the following topics:

Topic Page

Product Overview 260

Architecture Overview 261

Limitations 263
35012430 12/2015 259

Overview
Product Overview

Presentation

The BMX NOM 0200.4 is a new generic module that you can find in the Unity Pro hardware catalog
within communication family, for Quantum platforms only. First, you have to select a drop head
BMX CRA 312 10.3.

Supported Protocols

For the BMX NOM 0200 modules:
 channel 0 is RS232 or RS485,
 and channel 1 is only RS485.

Declaring the BMX NOM 0200 module as a BMX NOM 0200.4 in Unity Pro allows you to configure
the module as a:
 Modbus RTU slave on RS-485
 Modbus Serial RTU and ASCII Master on RS-232 and RS-485
 Character mode

Compatibility

This offer is compatible with the standard offer: BMX NOM 0200, BMX CRA 312 10,
140 CRP 312 00, and Quantum CPU.
260 35012430 12/2015

Overview
Architecture Overview

Presentation

Modbus slave messages received by the BMX NOM 0200.4 are transferred to the head
(BMX CRA 312 10.3) of the drop. Then, the head forwards the message on Ethernet I/O to the
Quantum CPU.

The Quantum 140 CRP 312 00 does not treat incoming Modbus messages. You have to plug an
additional 140 NOC 78• 00 Ethernet module in the Quantum main rack and to interlink it with the
CRP module.

After interlink, the drop head can send the Modbus messages to the 140 NOC 78• 00. The
140 NOC 78• 00 forwards the messages to the CPU.

For doing so, you must enter the IP address of the 140 NOC 78• 00 (Modbus server routing path
(see page 267)) in the BMX CRA 312 10.3 configuration.

Illustration

The Quantum CPU system treats the Modbus requests without any application program:

NOTE: The same path is used to route the Modbus response.
35012430 12/2015 261

Overview
HSBY Specific Case

The 140 NOC 78• 00 IP address swaps in the case of PLC switch over. The Modbus requests are
still forwarded to the operational CPU:

NOTE: The Modbus client application manages the repetition of requests in case of a message
loss that could occur during a PLC switch over.

Nominal Mode After Swich Over
262 35012430 12/2015

Overview
Limitations

Maximum Configuration

This table shows the maximum configuration of the BMX NOM 0200.4:

IP Address

You must configure the IP address of the Modbus routing path for each BMX CRA 312 10.3 that
supports a Modbus slave BMX NOM 0200.4 module.

Unity Pro provides no control on the consistency of those IP addresses.

Supported Protocols

Only Modbus RTU is supported as slave protocol.

Only RS-485 is supported when Modbus slave is selected.

Supported Modbus Function Codes

This table lists the Modbus function codes (FC) supported by the Quantum server:

Element Maximum configuration

Master channel 4 per configured drop with a maximum of 36 expert channels per drop.

NOTE: Each configured channel of the BMX NOM 0200.4 counts for an expert
channel.

Drop 4 BMX NOM 0200.4 per drop.

Quantum system 16 BMX NOM 0200

Modbus frame length 256 bytes

WARNING
UNINTENDED EQUIPMENT OPERATION

Check that the IP address is really the one of the Quantum that supports the Modbus server.

Failure to follow these instructions can result in death, serious injury, or equipment
damage.

Binding to ->
Modbus FC:

Variable type Code Function

01 %M 0X Read coil status (output bit)

02 %M 1X Read input status (input bit)

03 %MW 4X Read holding registers

05 %M 0X Force single coil
35012430 12/2015 263

Overview
04 %MW 3X Read input register

06 %MW 4X Write single register

15 %M 0X Write multiple coils

16 %MW 4X Write multiple registers

23 %MW 4X Read/write multiple registers

Binding to ->
Modbus FC:

Variable type Code Function
264 35012430 12/2015

Modicon M340 with Unity Pro

Configuration

35012430 12/2015
Configuration in Unity Pro

Chapter 13
Configuration in Unity Pro

Introduction

Most of the operating modes are identical to BMX NOM 0200 versions supported previously.

This chapter only details what is specific to the configuration of the BMX NOM 0200.4 module in
Unity Pro.

What Is in This Chapter?

This chapter contains the following topics:

Topic Page

Module Insertion 266

Module Configuration Screen 267
35012430 12/2015 265

Configuration
Module Insertion

Presentation

In a Quantum Ethernet I/O architecture, you can only insert the BMX NOM 0200.4 modules in a
Modicon X80 remote drop, with BMX CRA 312 10.3 as adapter module.

Procedure

Follow this procedure to insert the BMX NOM 0200.4 module in a Modicon X80 remote drop:

Step Action

1 Insert the 140 CRP 312 00 module in the Quantum local rack.

2 Create on the EIO Bus an EIO Modicon X80 drop with a BMX CRA 312 10.3.

3 Insert the new BMX NOM 0200.4 module in the drop.

4 Insert the 140 NOC 78• 00 in the Quantum local rack.
266 35012430 12/2015

Configuration
Module Configuration Screen

Modbus Server Routing Path Configuration

This configuration is only possible in offline mode (PLC not connected).

Follow this procedure to set the Modbus server routing path:

Unity Pro provides no control on the consistency of those IP addresses.

Step Action

1 Double-click the BMX CRA 312 10.3 module in the configurator editor.

2 Select the Cpu Modbus Server tab.

3 Select Enabled in the CPU modbus Server field.

4 Enter the IP address of the 140 NOC 78• 00 in the Modbus server routing path field. The
140 NOC 78• 00 manages the routing of the Modbus frames between Ethernet I/O and the CPU.

WARNING
UNINTENDED EQUIPMENT OPERATION

Check that the IP address is really the one of the Quantum that supports the Modbus server.

Failure to follow these instructions can result in death, serious injury, or equipment
damage.
35012430 12/2015 267

Configuration
NOTE: You must configure the IP address of the Modbus routing path for each BMX CRA 312 10.3
that supports a Modbus slave BMX NOM 0200.4 module.

Access to Channel Configuration Screens

Follow this procedure to access the channel configuration screens of the BMX NOM 0200.4
module:

To configure Modbus serial communication in master mode, refer to chapter Modbus Serial
Communication for BMX NOM 0200 (see page 131).

To configure character mode communication, refer to chapter Character Mode Communication for
BMX NOM 0200 (see page 177).

Step Action

1 Open the BMX NOM 0200.4 subdirectory in the project browser.

2 Select the channel to configure.
By default:
 Channel 0 is configured with the Character mode link function.
 Channel 1 is configured with the Modbus link function.

NOTE: Some parameters are not accessible and are grayed out.
268 35012430 12/2015

Configuration
Slave Modbus Link Configuration Screen

This figure shows the slave configuration screen of the BMX NOM 0200.4 module:

This table shows the default values of the parameters for Modbus slave configuration screen:

Configuration parameter Default value

Type Slave

Slave number 1

Physical line RS-485 only

Signals RX/TX only

Transmission speed 19200 bits/s

Delay between frames 2 ms

Data 8 bits only
35012430 12/2015 269

Configuration
NOTE: Modbus is a standard protocol. This module is based on a single mode of data exchange.
When configuring Modbus serial communication in master mode, the slave parameters are grayed
out and cannot be modified.

Stop 1 bit

Parity Even

Configuration parameter Default value
270 35012430 12/2015

Modicon M340 with Unity Pro

Example of Serial Link Implementation

35012430 12/2015
Quick Start : Example of Serial Link Implementation

Part V
Quick Start : Example of Serial Link Implementation

Overview

This part presents an example of serial link implementation.

What Is in This Part?

This part contains the following chapters:

Chapter Chapter Name Page

14 Description of the Application 273

15 Installing the Application Using Unity Pro 275

16 Starting the Application 303
35012430 12/2015 271

Example of Serial Link Implementation
272 35012430 12/2015

Modicon M340 with Unity Pro

Description of the Application

35012430 12/2015
Description of the Application

Chapter 14
Description of the Application

Overview of the Application

At a Glance

The application described in this document is a Modbus communication application via modems.

Example Illustration

The figure below illustrates the example:

The devices communicate with each other using modems. The supervisor is Modbus master
whereas the X and Y PLCs are slaves.

The goal of the example is to write the data area values of PLC X to PLC Y.

To do this, the PLC X must become Modbus Master.

Each day, the supervisor communicates with the PLCs to recover information.

If an alarm is raised on the PLC X, it switches in Modbus Master mode and sends data to PLC Y.

PLC X PLC Y

Modem Modem

Modem Supervisor

BMX NOM 0200

Run

com0

ERR DL

com1
35012430 12/2015 273

Description of the Application
To simplify programming, the modems have been initialized with the correct parameters via a
programming terminal. These parameters are stored in non-volatile memory by the AT&W
commands.

Operating Mode

The operating of the application is as follow:

Step Action

1 The PLC X port is switched to Character mode.

2 The PLC X sends a dial message to the modem.

3 The PLC X port is switched to Master Modbus mode.

4 The Master PLC (X) sends data to the Slave PLC (Y).

5 The port is switched to character mode.

6 The PLC X sends a disconnection message to the modem.

7 The PLC X port is switched to Slave Modbus mode.
274 35012430 12/2015

Modicon M340 with Unity Pro

Installing the Application Using Unity Pro

35012430 12/2015
Installing the Application Using Unity Pro

Chapter 15
Installing the Application Using Unity Pro

Subject of this Chapter

This chapter describes the procedure for creating the application described. It shows, in general
and in more detail, the steps in creating the different components of the application.

What Is in This Chapter?

This chapter contains the following sections:

Section Topic Page

15.1 Presentation of the Solution Used 276

15.2 Developing the Application 277
35012430 12/2015 275

Installing the Application Using Unity Pro
Presentation of the Solution Used

Section 15.1
Presentation of the Solution Used

The Different Steps in the Process Using Unity Pro

At a Glance

The following logic diagram shows the different steps to follow to create the application. A
chronological order must be respected in order to correctly define all of the application elements.

Description

Description of the different types:
276 35012430 12/2015

Installing the Application Using Unity Pro
Developing the Application

Section 15.2
Developing the Application

Subject of this Section

This section gives a step-by-step description of how to create the application using Unity Pro.

What Is in This Section?

This section contains the following topics:

Topic Page

Creating the Project 278

Declaration of Variables 283

Using a Modem 287

Procedure for Programming 289

Programming Structure 291

Programming 294
35012430 12/2015 277

Installing the Application Using Unity Pro
Creating the Project

At a Glance

In order to proceed to the development of the example, a main project associated with the PLC X
must be created for configuring the PLC X as well as declaring all needed variables and
programming the application. In addition, a separate project must be created for the configuration
of PLC Y.

Procedure for Creating a Project

The table below shows the procedure for creating a project using Unity Pro.

Step Action

1 Launch the Unity Pro software,

2 Click on File then New to select a BMX P34 20102 processor:

3 Confirm with OK.

New Project x

OK

Cancel

HelpChannel error
Drive_Ready Physical Input State
Counter in position
Origin Physical Input State
Proximity&LimitSwitch Physical Input State
State of Drive Enable Level output
State of Counter Clear output
Number of the command in progress
Number of the command in buffer

CH_P34 1000

Show all versions

BOOL

INT
INT

EBOOL
EBOOL
EBOOL
EBOOL
EBOOL
EBOOL

BMX P34 2000
BMX P34 2010

BMX P34 2020
BMX P34 2030...
BMX P30 20302

Premium
Quantum

Project Settings
Settings File:

Modicon M340
PLC Min.OS Version Description

T_PTO_BMX

<cdefault settings>

BMX P34 20102
278 35012430 12/2015

Installing the Application Using Unity Pro
Discrete Input Module Selection

The table below shows the procedure for selecting the discrete module needed by the PLC X.

Step Action

1 In the Project Browser double-click on Configuration then on 0:PLC Bus
and on 0:BMX XBP ••• (Where 0 is the rack number),

2 In the PLC Bus window, select a slot (for example slot 1) and double-click on it,

3 Choose the BMX DDI 1602 discrete input module located in the Discrete modules
list,

4 Confirm with OK.

New Device x

OK

Cancel

Help

0.2

Dig 16l 24 Vac/24Vdc Source
Dig 16l 48 Vac
Dig 16l 100 to 120 Vac
Dig 16 O Triacs

Dig 16l 48 Vdc Sink
Dig 32l 24 Vdc Sink
Dig 64l 24 Vdc Sink
Dig 8l 24 Vdc 8Q Source Tr
Dig 8l 24 Vdc 8Q Relays
Dig 16l 24 Vdc 16Q Source Tr
Dig 16Q Trans Source 0.5A
Dig 16 O Trans Sink
Dig 32Q Trans Source 0.1A
Dig 64Q Trans Source 0.1A
Dig 8Q Isolated Relays
Dig 16Q Relays

Analog

Topological address:

Communication
Counting
Discrete Discrete

BMX DAI 1602

BMX DDI 1603
BMX DDI 3202K
BMX DDI 6402K
BMX DDM 16022
BMX DDM 16025
BMX DDM 3202K
BMX DDO 1602
BMX DDO 1612
BMX DDO 3202K
BMX DDO 6402K
BMX DRA 0805
BMX DRA 1605

Motion

BMX DAI 1603.
BMX DAI 1604
BMX DAO 1605

Modicon M340 local drop
Part number Description

BMX DDI 1602 Dig 16l 24 Vdc Sink
35012430 12/2015 279

Installing the Application Using Unity Pro
BMX NOM 0200 Module Selection

In this example, a BMX NOM 0200 module is used in the PLC Y for the serial link with the modem.
Consequently it needs to be added to the project associated with the PLC Y.

The table below shows the procedure for selecting the BMX NOM 0200 module.

Step Action

1 In the Project Browser double-click on Configuration then on 0:PLC Bus and on
0:BMX XBP ••• (Where 0 is the rack number),

2 In the PLC Bus window, select a slot (for example slot 1) and double-click on it,

3 Choose the BMX NOM 0200 communication module located in the Communication modules
list,

4 Confirm with OK.

New Device x

OKTopological Address:

Part Number Description

Modicon M340 local drop
Analog
Communication

BMX EIA 100 AS-interface Module V3
Ethernet1 Port 10/100RJ45
Ethernet1 Port 10/100RJ45
Ethernet1 Port 10/100RJ45
Ethernet1 Port 10/100RJ45
Bus Module 2 RS485/232 port

BMX NOE 0100

BMX NOE 0110
BMX NOE 0110.2

Counting
Discrete
Motion

BMX NOE 0100.2

BMX NOM 0200

Cancel

Help

0.1
280 35012430 12/2015

Installing the Application Using Unity Pro
Processor Serial Port Configuration

The table below shows the procedure for configuring the serial port of the PLC X processor as
Modbus slave:

Step Action

1 In the Project Browser double-click on Configuration then on 0:BMX XBP 0800 then on
0:BMX P34 20102. Then double click on Serial Port to access to the 0.0:Serial Port
window.

2 Select the Slave type.

3 Select 9600 bits/s for transmission speed.

4 Select RS232 for physical line.

5 Select RTU (8bits) for data type.

6 Close the window and confirm with OK.
35012430 12/2015 281

Installing the Application Using Unity Pro
BMX NOM 0200 Serial Channel Configuration

The table below shows the procedure for configuring the serial channel of the PLC Y
BMX NOM 0200 module as Modbus slave:

Step Action

1 In the Project Browser double-click on Configuration then on 0:BMX XBP 0800 then on
0:BMX NOM 0200 to access to the 0.x:BMX NOM 0200 window (where x is the slot number, for
example x=1).

2 Select the Channel 0.

3 Select the Modbus link for function.

4 Select the Slave type.

5 Select 9600 bits/s for transmission speed.

6 Select RS232 for physical line.

7 Select RX/TX + RTS/CTS + DTR/DSR/DCD for signals.

8 Select 100 ms for RTS/CTS delay.

9 Select RTU (8bits) for data type.

10 Close the window and confirm with OK.

Configuration

Channel 1

Bus Module 2 RS485/232 port

Channel 0
BMX NOM 0200

Function :

Slave

Signals

ExternalSlave number

RX/TX

X 100ms

RX/TX +
RTS/CTS

RX/TX +
RTS/CTS +
DTR/DSR/DCD

Delay between frames

Default

Data

ASCII

RTU(8bit)

RTC/CTS delay

Parity

Even Odd None

2 bits

1 bits

Stop

ms

Transmission speed

Physical line

RS232

RS485

Task:
MAST

9600 bits/s

4

1

2

Character 1

Type

1 x 10ms

Number of retry

Answer delay

0

0.1 : BMX NOM 0200

Madbus link

Slave
282 35012430 12/2015

Installing the Application Using Unity Pro
Declaration of Variables

At a Glance

All of the variables used in the different sections of the program must be declared.

Undeclared variables cannot be used in the program.

NOTE: For more information, see Unity Pro online help (click on ?, then Unity, then Unity Pro
Software, then Operating Modes, and Data Editor).

Procedure for Declaring Variables

The table below shows the procedure for declaring application variables:

Variables Used for the Application

The following table shows the details of the variables used in the application and declared in the
project associated with the PLC X:

Step Action

1 In Project Browser / Variables & FB instances, double-click on
Elementary Variables

2 In the Data Editor window, select the box in the Name column and enter a
name for your first variable.

3 Now select a Type for this variable.

4 When all your variables are declared, you can close the window.

Variable Type Definition

Adr_Char STRING Master PLC serial port address.

Adr_modbus STRING Modbus Slave PLC serial channel address
(channel 0 of BMX NOM 0200 module).

AnsString1 STRING First modem answer character string.

AnsString2 STRING Second modem answer character string.

AnsString3 STRING Third modem answer character string.

Error INT Function error code.

Function_Step INT Function step.

MngtInput ARRAY[0..3] of INT Array of the communication parameters for
the INPUT_CHAR block.

MngtPrint ARRAY[0..3] of INT Array of the communication parameters for
the PRINT_CHAR block.

MngtWrite ARRAY[0..3] of INT Array of the communication parameters for
the WRITE_VAR block.
35012430 12/2015 283

Installing the Application Using Unity Pro
The following screen shows the application variables created using the data editor:

nb_charac_to_receive_connect INT Number of character to receive: modem
connexion

nb_charac_to_receive_ok INT Number of character to receive: modem
confirmation message

ReqString STRING Modem answer.

Start EBOOL Starting mode (signal coming from
channel 0 of the BMX DDI 1602 module).

Serial_Port T_COM_MB_BMX Serial port I/O object

Test_inc INT Incrementation value

Variable Type Definition
284 35012430 12/2015

Installing the Application Using Unity Pro
Declaring an Array Type

Before declaring an Array type, click on Tools/Project Settings/Variables then check "Directly
represented array variables" and "Allow dynamic arrays"

The following table shows how to declare an Array type:

New Device

Property label Property value
General

Allow leading digits

Allow usage of EBOOL edge

Allow INT/DINT in place of ANY_BIT

Allow bit extraction of INT and WORD

Directly represented array variables

Disable array size compatibility check

Allow dynamic arrays (ANY_ARRAY_XXX)

Character set Standard
Management of build messages
Build Settings

PLC diagnostics
PLC embedded data

Program
Languages

Common

Mixed display

Operator screens

Controlled screen
Last opened screen

Import Export Reset All

FBD
LD

OK CancelApply Help

SFC multi token
SFC

ST

Variables

Step Action

1 In the ProjectBbrowser, click on Variables & FB instances.

2 Click in the Name column and enter a name for the variable.
35012430 12/2015 285

Installing the Application Using Unity Pro
Declaration of I/O Objects

For declaring I/O Derived Variables, open the Variable Type Selection window as described
in the above procedure and click on <Catalog> to access the <IODDT> type variables (select
T COM MB BMX for example), then confirm with OK.

3

Double-click in the Type column and then click on the button.
The Variable Type Selection window
opens:

4 Choose the desired variable type (for example, click on <EDT> and select INT), then click into the Array
checkbox.

5 Modify the intervalle, then confirm with OK.

Step Action
286 35012430 12/2015

Installing the Application Using Unity Pro
Using a Modem

Description

It is necessary to know three commands to interface telephonic modems to PLCs. These
commands are the following:
 initialize modem,
 renumerate,
 disconnect modem.

It is imperative to send an initialization message followed by a dial message to the modem before
sending it an ASCII or Modbus message.

When the connection is successful between the two modems, you may send an unlimited number
of ASCII or Modbus messages.

When all the messages have been sent, you must send the disconnection string to the modem.

Initializing the Modem

The two modems must be configured with the same characteristics as the serial ports:
 data rate: 9600 bauds,
 character frame: 8 bits / parity even / 1 stop bit,
 line modulation: V32.

Then define ‘’+’’ as escape character (command: ATS2=43).

Example of initializing command:

ATQ0&Q0E0&K0V1

with:
 Q0: enable the result code
 &Q0: DTR is always assumed (ON),
 E0: disable the echo of characters,
 &K0: no flow control,
 V1: word result codes.

Dialing the Modem

The dial message is used to send the telephone number to the modem.

Only AT commands relating to dialing should be included in the message.

Example:
 Frequency dialing: ATDT6800326<CR><LR>
 Pulse dialing: ATDP6800326<CR><LF>
 Frequency dialing with tone waiting: ATDTW6800326<CR><LF>
35012430 12/2015 287

Installing the Application Using Unity Pro
Disconnecting the Modem

The modem is first switched back to the Command Mode by receiving the escape character three
times.

Then, the disconnect command "ATH0" can be send.

Escape sequence: "+++" (modem result code: OK),

Disconnect command: "ATH0" (modem result code: OK).
288 35012430 12/2015

Installing the Application Using Unity Pro
Procedure for Programming

Procedure to Follow

The array below shows the procedure for programming the application.

Step Action Details

1 Preparing the
communication port.

 Change the Slave Modbus mode to Character
mode by sending a WRITE_CMD
(see page 290) to the serial port.

 For a modem transmission , send the HAYES
command by using the PRINT_CHAR block to
configure the modem (see page 287).

 For a modem transmission , send the HAYES
command by using the PRINT_CHAR block. The
dial message is used to send a telephone
number to the modem (see page 287).

2 Master Modbus mode Switch to Modbus Master mode using the
WRITE_CMD (see page 290) command.

 Send data to write on the Slave PLC.

3 Reseting the
communication port.

 Switch to Character mode using the
WRITE_CMD (see page 290) command.

 For a modem transmission, send the escape
character, then send the disconnect command to
send a disconnection message to the modem
(see page 288) by using the PRINT_CHAR
block.

 Return to the starting mode of the serial port
(Slave Modbus) using the WRITE_CMD
(see page 290) command.
35012430 12/2015 289

Installing the Application Using Unity Pro
Writing the Command Words

The following steps should be executed to send a WRITE_CMD to a communication port:

Step Action Detail

1 Test to determine
whether any command is
pending.

Before executing a WRITE_CMD, test whether an
exchange is currently in progress using the
EXCH_STS language object (%MWr.m.c.0). To
refresh this word, use the READ_STS block.

2 Assign the command
word.

You must next modify the value of the command
language object in order to perform the required
command. For a Modbus link, the object language is
the internal word CONTROL (%MWr.m.c.24).
For example, to switch from Modbus mode to
character mode, the bit 14 of the word
%MWr.m.c.24 is set to 1.
Note: A single command bit must then be switched
from 0 to 1 before transmitting the WRITE_CMD.

3 Send the command Finally, a WRITE_CMD must be executed to
acknowledge the command.
290 35012430 12/2015

Installing the Application Using Unity Pro
Programming Structure

Steps Comments

Step number Step description Element

0 Initial state of function
When Start bit switches to 1, initialize error to 0 and go to step
5.

Modem

5 Read serial port status and check that no command is active.
Switch to Character mode and initialize Test_inc counter to 0.
Go to step 10.

10 Read serial port status and check that no command is active.
Reset TO_CHAR_MODE command bit.
 If there is no error on the serial port
 and Character mode is active, then go to step 15.
 and Character mode is not active, then increment

Test_inc and retry step 10 up to 1000 times. After 1000
failing retries, set Error to 10 and go to step 130.

 If there is an error on the serial port then
 set Error to 10.
 Go to step 130.

15 Send a dial command to the modem via the PRINT_CHAR
block.
Go to step 20.

20 If the result of PRINT_CHAR is conclusive then go to step 25
otherwise set Error to 20 and go to step 130.

25 Waiting for the response of the modem via the INPUT_CHAR
block. Once the response string is fully received, go to step 30.

30 If the result of INPUT_CHAR is conclusive then go to step 35
otherwise set Error to 30 and go to step 130.

35 If the modem responds as expected then go to step 40
otherwise set Error at 35 and go to step 130.
35012430 12/2015 291

Installing the Application Using Unity Pro
40 Read serial port status and check that no command is active.
Switch to Modbus Master mode and initialize Test_inc counter
to 0.
Go to step 45.

Modbus
Master
Mode

45 Read serial port status and check that no command is active.
Reset TO_CHAR_MODE command bit.
 If there is no error on the serial port
 and Character mode is active, then go to step 50.
 and Character mode is not active, then increment

Test_inc and retry step 45 up to 1000 times. After 1000
failing retries, set Error to 45 and go to step 130.

 If there is an error on the serial port then
 set Error to 45.
 Go to step 130.

50 Initialization of WRITE_VAR block parameter.
Send data to write on the PLC using the WRITE_VAR function.
Go to step 55.

Write
function

55 If the result of WRITE_VAR is conclusive then go to step 60
otherwise set Error to 55 and go to step 130.

60 Read serial port status and check that no command is active.
Switch to Character mode and initialize Test_inc counter to 0.
Go to step 65

Character
mode

65 Read serial port status and check that no command is active.
Reset TO_CHAR_MODE command bit.
 If there is no error on the serial port
 and Character mode is active, then go to step 70.
 and Character mode is not active, then increment

Test_inc and retry step 65 up to 1000 times. After 1000
failing retries, set Error to 65 and go to step 130.

 If there is an error on the serial port then
 set Error to 65.
 Go to step 130.

Step number Step description Element
292 35012430 12/2015

Installing the Application Using Unity Pro
70 Send an escape sequence to the modem using the
PRINT_CHAR block.
Go to step 75.

Modem

75 If the result of PRINT_CHAR is conclusive then go to step 80
otherwise set Error at 75 and go to step 130.

80 Waiting for the response of the modem via the INPUT_CHAR
block. Once the response string is fully received, go to step 85.

85 If the result of INPUT_CHAR is conclusive then go to step 90
otherwise set Error to 85 and go to step 130.

90 If the modem responds as expected then go to step 95
otherwise set Error to 90 and go to step 130.

95 Send a disconnection command to the modem using the
PRINT_CHAR block.
Go to step 100.

100 If the result of PRINT_CHAR is conclusive then go to step 105
otherwise set Error to 100 and go to step 130.

105 Waiting for the response of the modem via the INPUT_CHAR
block. Once the response string is fully received, go to step
110.

110 If the result of INPUT_CHAR is conclusive then go to step 115
otherwise set Error to 110 and go to step 130.

115 If the modem responds as expected then go to step 120
otherwise set Error to 115 and go to step 130.

120 Read serial port status and check that no command is active.
Switch to Modbus Slave mode and initialize Test_inc counter
to 0.
Go to step 125.

Modbus
Slave
mode

125 Read serial port status and check that no command is active.
Reset TO_CHAR_MODE command bit.
 If there is no error on the serial port
 and Character mode is active, then go to step 130.
 and Character mode is not active, then increment

Test_inc and retry step 125 up to 1000 times. After 1000
failing retries, set Error to 125 and go to step 130.

 If there is an error on the serial port then
 set Error to 125.
 Go to step 130.

130 Return to step 0.

Step number Step description Element
35012430 12/2015 293

Installing the Application Using Unity Pro
Programming

Programming in ST Language.

The example is programmed in ST language. The dedicated section is under the same master task
(MAST).

CASE Function_Step OF

0: (* Initialization *)

 IF (Start) THEN (* trigger flag *)

 Error := 0;

 Function_Step := 5; (* next step *)

 END_IF;

5: (* Send command to switch serial port from Slave Modbus mode to Character mode *)

 READ_STS(Serial_port); (* read serial port status *)

 IF (Serial_port.EXCH_STS = 0) THEN (* no active command *)

 Serial_port.CONTROL := 16#00; (* reset control word *)

 (* set TO_CHAR_MODE command bit *)

 SET(Serial_port.TO_CHAR_MODE);

 WRITE_CMD (Serial_port); (* send command *)

 Test_inc := 0; (* initialize retry counter *)

 Function_Step := 10; (* next step *)

 END_IF;

10: (* Test result of switch command to Character mode*)

 READ_STS(Serial_port); (* read serial port status *)

 IF (Serial_port.EXCH_STS = 0) THEN (* command completed *)

 (* reset TO_CHAR_MODE command bit *)

 RESET(Serial_port.TO_CHAR_MODE);

 IF (Serial_port.EXCH_RPT = 0) THEN (* no error *)

 IF (AND(Serial_port.PROTOCOL, 16#0F) = 03)

 THEN (* Character mode OK *)

 Function_Step := 15; (* next step *)

 ELSE

 Test_inc := Test_inc + 1;

 IF (Test_inc > 1000) THEN

 Error := 10; (* error *)
294 35012430 12/2015

Installing the Application Using Unity Pro
 Function_Step := 130; (* next step = end *)

 END_IF;

 END_IF;

 ELSE (* error in sending command to port *)

 Error := 10; (* error *)

 Function_Step := 130;

 END_IF;

 END_IF;

15: (* Send dial command to modem *)

 (*Phone number must be inserted between ‘ATDT’ and ‘$N’*)

 ReqString := ’ATDT4001$N’; (* dial message *)

 MngtPrint[2] := 500; (* timeout *)

 MngtPrint[9] := 9; (* exchange size in byte *)

PRINT_CHAR(ADDM(Adr_Char), ReqString, MngtPrint);

 Function_Step := 20;

20: (* Test PRINT_CHAR function result *)

 IF (NOT MngtPrint[0].0) THEN

 IF (MngtPrint[1] = 0) THEN

 Function_Step := 25; (* success : next step *)

 ELSE

 Error := 20; (* error *)

 Function_Step := 130; (* next step = end *)

 END_IF;

 END_IF;

25: (* Waiting for the response via INPUT_CHAR *)

 MngtInput[2] := 500; (* timeout *)

 AnsString1:=’ ’;

 (* wait modem reply *)

 INPUT_CHAR(ADDM(Adr_Char), 1, nb_charac_to_receive_connect, MngtInput, AnsString1);

 Function_Step := 30; (* next step *)

35012430 12/2015 295

Installing the Application Using Unity Pro
30: (* Test INPUT_CHAR function result *)

 IF (NOT MngtInput[0].0) THEN

 IF (MngtInput[1] = 0) THEN

 Function_Step := 35; (* success : next step *)

 ELSE

 Error := 30; (* error *)

 Function_Step := 130; (* next step = end *)

 END_IF;

 END_IF;

35: (* Test Modem reply *)

 IF (AnsString1 = ’$NCONNET’) THEN

 Function_Step := 40; (* success : next step *)

 ELSE

 Error := 35; (* error *)

 Function_Step := 130; (* next step = end *)

 END_IF;

40: (* Send command to switch serial port from character mode to Modbus Master *)

 READ_STS(Serial_port); (* read serial port status *)

 IF (Serial_port.EXCH_STS = 0) THEN (* no active command *)

 Serial_port.CONTROL := 16#00; (* reset control word *)

 (* set TO_MODBUS_MASTER command bit *)

 SET(Serial_port.TO_MODBUS_MASTER);

 WRITE_CMD (Serial_port); (* send command *)

 Test_inc := 0; (* initialize retry counter *)

 Function_Step := 45; (* next step *)

 END_IF;

45: (* Test result of switch command to Modbus Master mode*)

 READ_STS(Serial_port); (* read serial port status *)

 IF (Serial_port.EXCH_STS = 0) THEN (* command completed *)

 (* TO_MODBUS_MASTER command bit *)
296 35012430 12/2015

Installing the Application Using Unity Pro
 RESET(Serial_port.TO_MODBUS_MASTER);

 IF (Serial_port.EXCH_RPT = 0) THEN (* no error *)

 IF (AND(Serial_port.PROTOCOL, 16#0F) = 06)

 THEN (* Modbus Master mode OK *)

 Function_Step := 50; (* next step *)

 ELSE

 Test_inc := Test_inc + 1;

 IF (Test_inc > 1000) THEN

 Error := 45; (* error *)

 Function_Step := 130; (* next step = end *)

 END_IF;

 END_IF;

 ELSE (* error in sending command to port *)

 Error := 45; (* error *)

 Function_Step := 130;

 END_IF;

 END_IF;

50: (*Write information in the second CPU*)

 Mngtwrite[2]:=50; (* time outs*)

 %MW40:=5; (* value to send *)

 WRITE_VAR(ADDM(Adr_modbus),’%MW’,100,2,%MW40:2,Mngtwrite);

 Function_Step := 55;

55: (* Test WRITE_VAR function result *)

 IF (NOT Mngtwrite[0].0) THEN

 IF (Mngtwrite[1] = 0) THEN

 Function_Step := 60; (* success : next step *)

 ELSE

 Error := 55; (* error *)

 Function_Step := 130; (* next step = end *)

 END_IF;

 END_IF;
35012430 12/2015 297

Installing the Application Using Unity Pro

60: (* Send command to switch serial port from Modbus to character mode *)

 READ_STS(Serial_port); (* read serial port status *)

 IF (Serial_port.EXCH_STS = 0) THEN (* no active command *)

 Serial_port.CONTROL := 16#00; (* reset control word *)

 (* set TO_CHAR_MODE command bit *)

 SET(Serial_port.TO_CHAR_MODE);

 WRITE_CMD (Serial_port); (* send command *)

 Test_inc := 0; (* initialize retry counter *)

 Function_Step := 65; (* next step *)

 END_IF;

65: (* Test result of switch command *)

 READ_STS(Serial_port); (* read serial port status *)

 IF (Serial_port.EXCH_STS = 0) THEN (* command completed *)

 (* reset TO_CHAR_MODE command bit *)

 RESET(Serial_port.TO_CHAR_MODE);

 IF (Serial_port.EXCH_RPT = 0) THEN (* no error *)

 IF (AND(Serial_port.PROTOCOL, 16#0F) = 03)

 THEN (* character mode OK *)

 Function_Step := 70; (* next step *)

 ELSE

 Test_inc := Test_inc + 1;

 IF (Test_inc > 1000) THEN

 Error := 65; (* error *)

 Function_Step := 130; (* next step = end *)

 END_IF;

 END_IF;

 ELSE (* error in sending command to port *)

 Error := 65; (* error *)

 Function_Step := 130; (* next step = end *)

 END_IF;

 END_IF;
298 35012430 12/2015

Installing the Application Using Unity Pro

70: (* Hangup modem: step 1*)

 ReqString := ’+++’; (* escape sequence *)

 MngtPrint[3] := 3; (* exchange size in byte *)

 PRINT_CHAR(ADDM(Adr_Char), ReqString, MngtPrint);

 Function_Step := 75; (* next step *)

75: (* Test PRINT_CHAR function result *)

 IF (NOT MngtPrint[0].0) THEN

 IF (MngtPrint[1] = 0) THEN

 (* Success : next step *)

 Function_Step := 80;

 ELSE

 (* End on error *)

 Error := 75;

 Function_Step := 130;

 END_IF;

 END_IF;

80:

 MngtInput[2] := 50; (* timeout *)

 INPUT_CHAR(ADDM(Adr_Char), 1, nb_charac_to_receive_ok, MngtInput, AnsString2); (*Wait
modem reply*)

 Function_Step := 85; (*next step*)

85: (* Test INPUT_CHAR function result *)

 IF (NOT MngtInput[0].0) THEN

 IF (MngtInput[1] = 0) THEN

 (* Success : next step *)

 Function_Step := 90;

 ELSE

 (* End on error *)

 Error := 85;

 Function_Step := 130;

 END_IF;

 END_IF;
35012430 12/2015 299

Installing the Application Using Unity Pro
90: (* Test Modem reply *)

 IF (AnsString2 = ’$NOK’) THEN

 Function_Step := 95; (* success : next step *)

 ELSE

 Error := 90; (* error *)

 Function_Step := 130; (* next step = end *)

 END_IF;

95: (* Hangup modem: step 2 *)

 ReqString := ’ATH0$N’; (* hangup message *)

 MngtPrint[3] := 3; (* exchange size in byte *)

 PRINT_CHAR(ADDM(Adr_Char), ReqString, MngtPrint);

 Function_Step := 100; (* next step *)

100: (* Test PRINT_CHAR function result *)

 IF (NOT MngtPrint[0].0) THEN

 IF (MngtPrint[1] = 0) THEN

 (* Success : next step *)

 Function_Step := 105;

 ELSE

 (* End on error *)

 Error := 100;

 Function_Step := 130;

 END_IF;

 END_IF;

105:

 MngtInput[2] := 50; (* timeout *)

 INPUT_CHAR(ADDM(Adr_Char), 1, nb_charac_to_receive_ok, MngtInput, AnsString3); (*Wait
modem reply*)

 Function_Step := 110; (*next step*)

110: (* Test INPUT_CHAR function result *)

 IF (NOT MngtInput[0].0) THEN

 IF (MngtInput[1] = 0) THEN

 (* Success : next step *)

 Function_Step := 115;

 ELSE
300 35012430 12/2015

Installing the Application Using Unity Pro
 (* End on error *)

 Error := 110;

 Function_Step := 130;

 END_IF;

 END_IF;

115: (* Test Modem reply *)

 IF (AnsString3 = ’$NOK’) THEN

 Function_Step := 120; (* success : next step *)

 ELSE

 Error := 115; (* error *)

 Function_Step := 130; (* next step = end *)

 END_IF;

120: (* Send command to switch serial port from Character mode to Slave Modbus mode *)

 READ_STS(Serial_port); (* read serial port status *)

 IF (Serial_port.EXCH_STS = 0) THEN (* no activecommand *)

 Serial_port.CONTROL := 16#00; (* reset control word *)

 (* set TO_MODBUS_SLAVE command bit *)

 SET(Serial_port.TO_MODBUS_SLAVE);

 WRITE_CMD (Serial_port); (* send command *)

 Test_inc := 0; (* initialize retry counter *)

 Function_Step := 125; (* next step *)

 END_IF;

125: (* Test result of switch command *)

 READ_STS(Serial_port); (* read serial port status *)

 IF (Serial_port.EXCH_STS = 0) THEN (* command completed *)

 (* reset TO_MODBUS_SLAVE command bit *)

 RESET(Serial_port.TO_MODBUS_SLAVE);

 IF (Serial_port.EXCH_RPT = 0) THEN (* no error *)

 IF (AND(Serial_port.PROTOCOL, 16#0F) = 07)

 THEN (* character mode OK *)

 Function_Step := 130; (* next step *)

 ELSE
35012430 12/2015 301

Installing the Application Using Unity Pro
 Test_inc := Test_inc + 1;

 IF (Test_inc > 1000) THEN

 Error := 125; (* error *)

 Function_Step := 130; (* next step = end *)

 END_IF;

 END_IF;

 ELSE (* error in sending command to port *)

 Error := 125; (* error *)

 Function_Step := 130; (* next step = end *)

 END_IF;

 END_IF;

130: (* End *)

 IF (NOT Start) THEN (* trigger flag *)

 Function_Step := 0; (* goto waiting state *)

 END_IF;

END_CASE;
302 35012430 12/2015

Modicon M340 with Unity Pro

Starting the Application

35012430 12/2015
Starting the Application

Chapter 16
Starting the Application

Execution of the Application in Standard Mode

At a Glance

In this example, standard mode working requires the use of two PLCs, a discrete input module, a
BMX NOM 0200 module, and 2 SR2MOD01 modems.

First Slave PLC Wiring

The first slave PLC is connected as following:

In this example, the first modem is connected to the processor serial port of the first slave PLC.

The actuator state controls the Start variable state in the application.
35012430 12/2015 303

Starting the Application
Second Slave PLC Wiring

The second slave PLC is connected as following:

In this example, the second modem is connected to the channel 0 of the BMX NOM 0200 module
of the second slave PLC.

For a better communication reliability, the cable TCS XCN 3M4F3S4 is used for DTR/DSR/DCD
modem signals handling by the application.

Configuration of the Second Slave PLC

Before transferring the project for configuring the second slave PLC, verify that the second slave
PLC is not connected to the modem.

The table below shows the procedure for transfering the project in standard mode:

Slave PLC

Phone Line
Modem

RUN ERR DL

COM0

COM1

Step Action

1 In the PLC menu, click on Standard Mode,

2 In the Build menu, click on Rebuild All Project. Your project is
generated and is ready to be transferred to the PLC.

3 In the PLC menu, click on Connect. You are now connected to the PLC.

4 In the PLC menu, click on Transfer Project to PLC. The Transfer
Project to PLC window opens. Click on Transfer. The application is
transferred to the PLC.

5 Connect the second slave PLC to a SR2MOD01 modem.
304 35012430 12/2015

Starting the Application
Application Transfer to the First Slave PLC

Before transferring the application, verify that the first slave PLC is not connected to the modem.

The table below shows the procedure for transfering the application in standard mode:

Application Execution on the First Slave PLC

The table below shows the procedure for executing the application in standard mode:

Step Action

1 In the PLC menu, click on Standard Mode,

2 In the Build menu, click on Rebuild All Project. Your project is
generated and is ready to be transferred to the PLC. When you generate the
project, you will see a results window. If there is an error in the program, Unity
Pro indicates its location (click on the highlighted sequence).

3 In the PLC menu, click on Connect. You are now connected to the PLC.

4 In the PLC menu, click on Transfer Project to PLC. The Transfer
Project to PLC window opens. Click on Transfer. The application is
transferred to the PLC.

Step Action

1 In the PLC, click on Run. The Run window opens. Click on OK. The application
is now being executed on the PLC.

2 Disconnect the PC which is running Unity Pro software from the first slave PLC.

3 Connect the first slave PLC to a SR2MOD01 modem.
35012430 12/2015 305

Starting the Application
306 35012430 12/2015

Modicon M340 with Unity Pro

Glossary

35012430 12/2015
Glossary
!

%I
According to the CEI standard, %I indicates a language object of type discrete IN.

%IW
According to the CEI standard, %IW indicates a language object of type analog IN.

%KW
According to the CEI standard, %KW indicates a language object of type constant word.

%M
According to the CEI standard, %M indicates a language object of type memory bit.

%MW
According to the CEI standard, %MW indicates a language object of type memory word.

%Q
According to the CEI standard, %Q indicates a language object of type discrete OUT.

%QW
According to the CEI standard, %QW indicates a language object of type analog OUT.

A

Address
On a network, the identification of a station. In a frame, a grouping of bits that identifies the frame’s
source or destination.

Altivar
AC variable speed drive.

ARRAY
An ARRAY is a table containing elements of a single type.The syntax is as follows: ARRAY
[<limits>] OF <Type>Example:ARRAY [1..2] OF BOOL is a one-dimensional table with two
elements of type BOOL.ARRAY [1..10, 1..20] OF INT is a two-dimensional table with 10x20
elements of type INT.

ASCII
ASCII is the abbreviation of American Standard Code for Information Interchange.This is an
American code (but which has become an international standard) that uses 7 bits to define every
alphanumerical character used in English, punctuation symbols, certain graphic characters and
other miscellaneous commands.
35012430 12/2015 307

Glossary
B

BOOL
BOOL is the abbreviation for the Boolean type. This is the basic data type in computing. A BOOL
variable can have either of the following two values: 0 (FALSE) or 1 (TRUE). A bit extracted from
a word is of type BOOL, for example: %MW10.4.

Broadcast
Broadcast communications send packets from one station to every network destinations.
Broadcast messages pertain to every network devices or only one device for which the address is
not known.

BYTE
When 8 bits are grouped together, they are called a BYTE. You can enter a BYTE either in binary
mode or in base 8. The BYTE type is encoded in an 8 bit format which, in hexadecimal format,
ranges from 16#00 to 16#FF.

C

Configuration
The configuration gathers the data which characterizes the machine (invariant) and which is
necessary for the module to operate. All this information is stored in the constant PLC %KW zone.
The PLC application cannot modify them.

CPU
CPU is the abbreviation of Central Processing Unit: generic name used for Schneider Electric
processors.

CRC
CRC is the abbreviation of Cyclic Redundancy Checksum: it indicates whether no character has
been "deformed" during frame transmission.

D

DFB
DFB is the abbreviation of Derived Function Block. DFB types are function blocks that can be
defined by the user in ST (Structured Text), IL (Instruction List), LD (Ladder Diagram) or FBD
(Function Block Diagram) language. Using these DFB types in an application makes it possible to:

 simplify the design and entry of the program;
 make the program easier to read;
 make it easier to debug;
 reduce the amount of code generated.
308 35012430 12/2015

Glossary
DINT
DINT is the abbreviation of Double INTeger (encoded in 32 bits). The upper/lower limits are as
follows: -(2 to the power of 31) to (2 to the power of 31) - 1.Example:-2147483648, 2147483647,
16#FFFFFFFF.

Discrete Module
Module with discrete inputs/outputs.

E

EBOOL
EBOOL is the abbreviation of Extended BOOLean. An EBOOL type has a value (0 (FALSE) or 1
(TRUE), but also rising or falling edges and forcing functions. An EBOOL variable occupies one
byte in memory. The byte contains the following information:

 one bit for the value;
 one bit for the history (whenever the object changes state, the value is copied to the history bit);
 one bit for forcing (equal to 0 if the object is not forced, or 1 if the bit is forced).

The default value of each bit is 0 (FALSE).

EF
EF is the abbreviation of Elementary Function. This is a block used in a program which performs
a predefined logical function. A function does not have any information on the internal state.
Several calls to the same function using the same input parameters always return the same output
values. You will find information on the graphic form of the function call in the "[functional block
(instance)]". Unlike a call to a function block, function calls include only an output which is not
named and whose name is identical to that of the function. In FBD, each call is indicated by a
unique [number] via the graphic block. This number is managed automatically and cannot be
modified. You position and configure these functions in your program in order to execute your
application. You can also develop other functions using the SDKC development kit.

F

FBD
FBD is the abbreviation of Function Block Diagram. FBD is a graphical programming language that
works like a flowchart. By adding simple logical blocks (AND, OR, etc.), each function or function
block in the program is represented in this graphical format. For each block, the inputs are on the
left and the outputs on the right. Block outputs can be linked to inputs of other blocks in order to
create complex expressions.

Fipio
Field bus used to connect sensor or actuator type devices.

FLASH memory
FLASH memory is nonvolatile memory that can be overwritten. It is stored on a special EEPROM
that can be erased and reprogrammed.
35012430 12/2015 309

Glossary
Frame
A frame is a group of bits that form a discrete block of information. Frames contain network control
information or data. The size and composition of a frame is determined by the network technology
being used.

Full duplex
A method of data transmission capable of transmitting and receiving over the same channel
simultaneously.

H

Half duplex
A method of data transmission capable of communication in either of two directions, but in only one
direction at a time.

Hub
A hub device connects a series of flexible and centralized modules to create a network.

I

INT
INT is the abbreviation of single INTeger (encoded in 16 bits). The upper/lower limits are as follows:
-(2 to the power of 15) to (2 to the power of 15) - 1. Example:-32768, 32767,
2#1111110001001001, 16#9FA4.

IODDT
IODDT is the abbreviation of Input/Output Derived Data Type. The term IODDT indicates a
structured data type representing a module or a channel of a PLC module. Each expert module
has its own IODDTs.

L

LED
LED is the abbreviation of Light emitting diode. An indicator that lights up when electricity passes
through it. It indicates the operation status of a communication module.

LRC
LRC is the abbreviation of Longitudinal redundancy check: it has been devised to address the low
probability of error detection of parity checking.
310 35012430 12/2015

Glossary
M

Master task
Main program task. It is obligatory and is used to carry out sequential processing of the PLC.

Momentum
I/O modules using several open standard communication networks.

N

Network
There are two meanings of the word "network".

 In LD (Ladder Diagram): a network is a set of interconnected graphic elements. The scope of a
network is local, concerning the organizational unit (section) of the program containing the
network.

 With expert communication modules: a network is a set of stations that intercommunicate. The
term "network" is also used to define a group interconnected graphic elements. This group then
makes up part of a program that may comprise a group of networks.

P

PLC
PLC is the abbreviation of Programmable logic controller. The PLC is the brain of an industrial
manufacturing process. It automates a process as opposed to relay control systems. PLCs are
computers suited to survive the harsh conditions of the industrial environment.

Protocol
Describes message formats and a set of rules used by two or more devices to communicate using
those formats.

R

RS232
Serial communication standard which defines the voltage of the following service:

 a signal of +12 V indicates a logical 0,
 a signal of -12 V indicates a logical 1.

There is, however, in the case of any attenuation of the signal, detection provided up to the limits
-3 V and +3 V. Between these two limits, the signal will be considered as invalid.RS232
connections are quite sensitive to interferance. The standard specifies not to exceed a distance of
15 m or a maximum of 9600 bauds (bits/s).
35012430 12/2015 311

Glossary
RS485
Serial connection standard that operates in 10 V/+5 V differential. It uses two wires for
send/receive. Their "3 states" outputs enable them to switch to listen mode when the transmission
is terminated.

RTU
RTU is the abbreviation of Remote Terminal Unit. In RTU mode, data is sent as two four-bit,
hexadecimal characters, providing for higher throughput than in ASCII mode for the same
baudrate. Modbus RTU is a binary protocol and more time delay critical than the ASCII protocol.

S

Section
Program module belonging to a task which can be written in the language chosen by the
programmer (FBD, LD, ST, IL, or SFC). A task can be composed of several sections, the order of
execution of the sections corresponding to the order in which they are created. This order is
modifiable.

SEPAM
Digital protection relay for protection, control and monitoring of power systems.

Socket
The association of a port with an IP address, serving as an identification of sender or recipient.

ST
ST is the abbreviation of Structured Text.The structured literal language is a developed language
similar to computer programming languages. It can be used to organize a series of instructions.

STRING
A STRING variable is a series of ASCII characters. The maximum length of a string is 65,534
characters.

T

TAP
TAP is the abbreviation of Transmission Access Point: the bus connection unit.

Task
A group of sections and subroutines, executed cyclically or periodically for the MAST task, or
periodically for the FAST task. A task possesses a level of priority and is linked to inputs and
outputs of the PLC. These I/O are refreshed in consequence.

U

Unity Pro
Schneider Automation PLC programming software.
312 35012430 12/2015

Glossary
V

Variable
Memory entity of type BOOL, WORD, DWORD, etc., whose contents can be modified by the
program currently running.

W

WORD
The type WORD is encoded in a 16 bit format and is used to perform processing on series of bits.

This table shows the upper/lower limits of each of the bases that can be used:

Examples of representation:

X

XBT
Graphical operator terminal.

XPS
Safety module used for processing of safety signals to monitor both the component and the wiring
of a safety system, including devices for general monitoring as well as application specific models.

Base Lower limit Upper limit

Hexadecimal 16#0 16#FFFF

Octal 8#0 8#177777

Binary 2#0 2#1111111111111111

Data Representation in one of the bases

0000000011010011 16#D3

1010101010101010 8#125252

0000000011010011 2#11010011
35012430 12/2015 313

Glossary
314 35012430 12/2015

Modicon M340 with Unity Pro

Index

35012430 12/2015
Index
B
BMXNOM0200, 19
BMXNOM0200.4, 257
BMXP341000, 19
BMXP342000, 19
BMXP342010, 19
BMXP3420102, 19
BMXP342020, 19

C
Cabling, 59
changing protocols, 252, 254
channel data structure for all modules

T_GEN_MOD, 246, 246
channel data structure for character mode
communication

T_COM_CHAR_BMX, 240, 241
channel data structure for communication
protocols

T_COM_STS_GEN, 227, 228
channel data structure for modbus communi-
cation

T_COM_MB_BMX, 232, 233
character mode, 103
configuring character mode, 108
configuring Modbus, 77
connection devices, 39

D
debugging character mode, 128
debugging Modbus, 100, 174

G
grounding, 33
35012430 12/2015
I
INPUT_CHAR, 121, 196

M
M340

hardened, 32
ruggedized, 32

Modbus bus, 69

P
parameter settings, 217
PRINT_CHAR, 121, 196
programming character mode, 121
programming Modbus bus, 89

Q
quick start, 271

T
T_COM_CHAR_BMX, 240, 241
T_COM_MB_BMX, 232, 233
T_COM_STS_GEN, 227, 228
T_GEN_MOD, 246, 246
T_M_COM_NOM, 248

W
wiring accessories, 59
315

Index
316
 35012430 12/2015

	Modicon M340 with Unity Pro
	Table of Contents
	Safety Information
	About the Book
	Introduction to Modbus Serial and Character Mode Communications
	Introduction to Modbus Serial and Character Mode Communications
	Introduction to Modbus Serial and Character Mode Communications

	Hardware Installation for Modbus Serial and Character Mode Communications
	Introduction to Serial Communications
	Serial Link on the BMX P34 1000/2000/2010/20102/2020 Processors
	Presentation of the Serial Link on the BMX P34 1000/2000/2010/20102/2020 Processors.

	2 RS-485/232 ports module BMX NOM 0200
	Presentation of the BMX NOM 0200 2 RS-485/232 Ports Module
	Modicon M340H (Hardened) Equipment
	Grounding of Installed Modules
	Installation of the Module BMX NOM 0200
	BMX NOM 0200 Wiring Considerations

	Serial Communication Architectures
	Serial Communication Architectures for BMX P34 1000/2000/2010/20102/2020 processors
	Modbus Line Termination and Polarization (RS485)
	Connecting Modbus Devices (RS485)
	Connecting Data Terminal Equipment (DTE) (RS232)
	Connecting Data Circuit-terminating Equipment (DCE) (RS232)

	Serial Communication Architectures for BMX NOM 0200
	Modbus Line Termination and Polarization (RS485)
	Connecting Modbus Devices (RS485)
	Connecting Data Terminal Equipment (DTE) (RS232)
	Connecting Data Circuit-terminating Equipment (DCE) (RS232)

	Cabling
	Cabling

	Software Implementation of Modbus Serial and Character Mode Communications
	Installation Methodology
	Introduction to the Installation Phase

	Modbus Serial Communication for BMX P34 1000/2000/2010/20102/2020 Processors
	Generalities
	About Modbus Serial
	Performance
	How to Access the Serial Link Parameters

	Modbus Serial Communication Configuration
	Modbus Serial Communication Configuration Screen
	Accessible Modbus Functions
	Default Values for Modbus Serial Communication Parameters
	Application-linked Modbus Parameters
	Transmission-linked Modbus Parameters
	Signal and Physical Line Parameters in Modbus

	Modbus Serial Communication Programming
	Services Supported by a Modbus Link Master Processor
	Services Supported by a Modbus Link Slave Processor

	Debugging Modbus Serial Communication
	Modbus Serial Communication Debug Screen

	Character Mode Communication for BMX P34 1000/2000/2010/20102/2020 Processors
	Generalities
	About Character Mode Communication
	Performance

	Character Mode Communication Configuration
	Character Mode Communication Configuration Screen
	Accessible Functions in Character Mode
	Default Values for Character Mode Communication Parameters
	Message End Detection Parameters in Character Mode
	Transmission Parameters in Character Mode
	Signal and Physical Line Parameters in Character Mode

	Character Mode Communication Programming
	Character Mode Communication Functions

	Debugging Character Mode communication
	Character Mode Communication Debug Screen

	Modbus Serial Communication for BMX NOM 0200
	Generalities
	About Modbus Serial
	Performance
	How to Access the Serial Link Parameters

	Modbus Serial Communication Configuration
	Modbus Serial Communication Configuration Screen in a Modicon M340 Local Rack
	BMX NOM 0200 Modbus Serial Communication Configuration Screen in X80 Drop
	Accessible Modbus Functions
	Default Values for Modbus Serial Communication Parameters
	Application-linked Modbus Parameters
	Transmission-linked Modbus Parameters
	Signal and Physical Line Parameters in Modbus
	How to Set the BMX NOM0200 MODBUS Slave Address Without Unity Pro?

	Modbus Serial Communication Programming
	Services Supported by a Modbus Link Master Module
	Services Supported by a Modbus Link Slave Module
	Detail of Modbus Expert Mode

	Debugging Modbus Serial Communication
	Modbus Serial Communication Debug Screen

	Character Mode Communication for BMX NOM 0200
	Generalities
	About Character Mode Communication

	Character Mode Communication Configuration
	BMX NOM 0200 Character Mode Communication Configuration Screen in a Local Rack
	BMX NOM 0200 Character Mode Communication Configuration Screen in X80 Drop
	Accessible Functions in Character Mode
	Default Values for Character Mode Communication Parameters
	Message End Detection Parameters in Character Mode
	Transmission Parameters in Character Mode
	Signal and Physical Line Parameters in Character Mode

	Character Mode Communication Programming
	Character Mode Communication Functions
	Detail of Character Mode Expert Mode

	Debugging Character Mode communication
	Character Mode Communication Debug Screen

	BMX NOM 0200 Module Diagnostics
	BMX NOM 0200 Module Diagnostics
	Diagnostics of a BMX NOM 0200 Module
	Detailed Diagnostics by Communication Channel

	Language Objects of Modbus and Character Mode Communications
	Language Objects and IODDTs of Modbus and Character Mode Communications
	Introduction to the Language Objects for Modbus and Character Mode Communications
	Implicit Exchange Language Objects Associated with the Application-Specific Function
	Explicit Exchange Language Objects Associated with the Application-Specific Function
	Management of Exchanges and Reports with Explicit Objects

	General Language Objects and IODDTs for Communication Protocols
	Details of IODDT Implicit Exchange Objects of Type T_COM_STS_GEN
	Details of IODDT Explicit Exchange Objects of Type T_COM_STS_GEN

	Language Objects and IODDTs Associated with Modbus Communication
	Details concerning Explicit Exchange Language Objects for a Modbus Function
	Details of the IODDTs Implicit Exchange Objects of Types T_COM_MB_BMX and T_COM_MB_BMX_CONF_EXT
	Details of the IODDTs Explicit Exchange Objects of Types T_COM_MB_BMX and T_COM_MB_BMX_CONF_EXT
	Details of language objects associated with configuration Modbus mode

	Language Objects and IODDTs associated with Character Mode Communication
	Details concerning Explicit Exchange Language Objects for Communication in Character Mode
	Details of IODDT Implicit Exchange Objects of Type T_COM_CHAR_BMX
	Details of IODDT Explicit Exchange Objects of Type T_COM_CHAR_BMX
	Details of language objects associated with configuration in Character mode

	The IODDT Type T_GEN_MOD Applicable to All Modules
	Details of the Language Objects of the IODDT of Type T_GEN_MOD

	Language Objects and Device DDTs Associated with Modbus Communication
	Communication Device DDT Names

	Dynamic Protocol Switching
	Changing Protocol with BMX P34 1000/2000/2010/20102/2020 Processors
	Changing Protocol with the BMX NOM 0200 Module

	Quick Start: BMX NOM 0200.4
	Overview
	Product Overview
	Architecture Overview
	Limitations

	Configuration in Unity Pro
	Module Insertion
	Module Configuration Screen

	Quick Start : Example of Serial Link Implementation
	Description of the Application
	Overview of the Application

	Installing the Application Using Unity Pro
	Presentation of the Solution Used
	The Different Steps in the Process Using Unity Pro

	Developing the Application
	Creating the Project
	Declaration of Variables
	Using a Modem
	Procedure for Programming
	Programming Structure
	Programming

	Starting the Application
	Execution of the Application in Standard Mode

	Glossary
	Index

