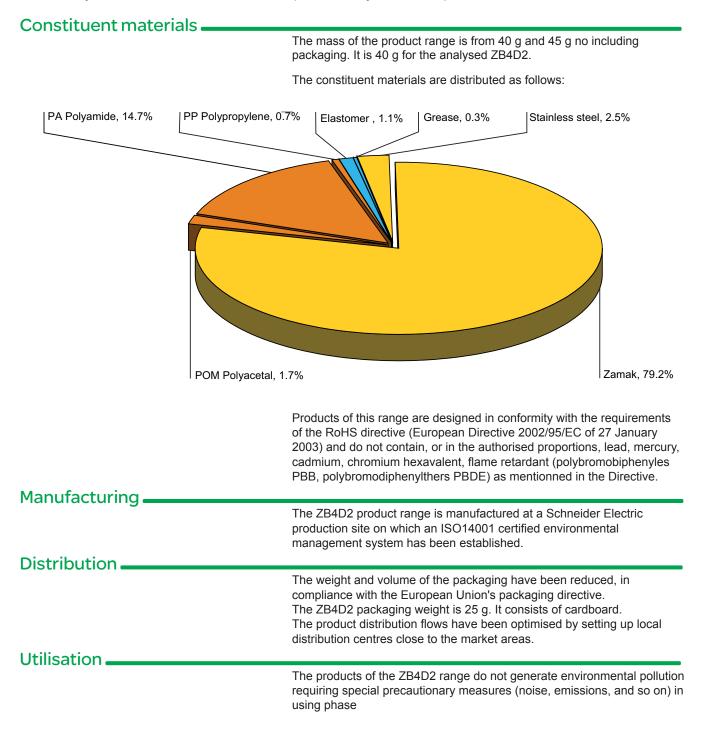
Product Environmental Profile

Harmony ZB4BD, ZB4BJ Except ZB4BJ.9.

Product Environmental Profile - PEP

Product Overview

The main function of the ZB4BD and ZB4BJ products range is to command an action on a machine.


This range consists of: selector switches (with standard or long handle) heads.

The representative product used for the analysis is ZB4BD2.

The environmental impacts of this referenced product are representative of the impacts of the other products of the range which are developed with the similar technology.

The environmental analysis was performed in conformity with ISO14040.

This analysis takes in account the complete life cycle of the product.

Product Environmental Profile - PEP

At end of life, the products in the ZB4D2 have been optimized to decrease the amount of waste and valorise the components and materials of the product. The product range doesn't need any specific end of life special treatment. According to the countries practices this product can enter the usual end of life treatment processes. The potential of recyclability of the products has been evaluated using the Codde" recyclability and recoverability calculation method" (version V1, 20 Sep. 2008) and published by ADEME (French Agency for Environment and Energy Management). According this method, the potential recyclability ratio is: 66 %. As described in the recyclability calculation method, this ratio includes metals and plastics chosen for their proven industrial recycling processes, but do not include materials which don't have such proven treatment processes (ie most type of plastics which are not recycled). Environmental impacts The life cycle assessment has been achieved on the following life phase: Materials and Manufacturing (M), Distribution (D), Utilisation (U). Modelisation hypothesis and impact result: The calculation has been done on ZB4D2. Product packaging: is included, Installation components: no special components included, in the category 3 (assumed lifetime service is 20 years and no using scenario). 	Environmental indicators	Unit	XB5R S = M + D + U	Μ	D	U
At end of life, the products in the ZB4D2 have been optimized to decrease the amount of waste and valorise the components and materials of the product. The product range doesn't need any specific end of life special treatment. According to the countries practices this product can enter the usual end of life treatment processes. The potential of recyclability of the products has been evaluated using the Codde" recyclability and recoverability calculation method" (version V1, 20 Sep. 2008) and published by ADEME (French Agency for Environment and Energy Management). According this method, the potential recyclability ratio is: 66 %. As described in the recyclability calculation method, this ratio includes metals and plastics chosen for their proven industrial recycling processes, but do not include materials which don't have such proven treatment processes (ie most type of plastics which are not recycled).		Materials and Modelisation I The calcula Product pac Installation	Manufacturing hypothesis and tion has been d ckaging: is inclu components: no r the use phase	(M), Distribution impact result: one on ZB4D2 ded, o special comp :: this product r	on (D), Utilisation. onents includer ange is includer	on (U). d, d in the
End of life		decrease the materials of th The product ra According to t of life treatme The potential the Codde" re V1, 20 Sep. 2 Environment a According this described in th metals and pla processes, but	amount of wast he product. ange doesn't ne he countries pro- nt processes. of recyclability of cyclability and r 008) and publis and Energy Mars method, the pro- ne recyclability astics chosen for t do not include	e and valorise eed any specific actices this pro- of the products recoverability c hed by ADEME nagement). otential recycla calculation metor or their proven e materials whice	the component c end of life spe duct can enter has been eval alculation meth E (French Agen bility ratio is: 60 thod, this ratio industrial recyc ch don't have s	ts and ecial treatment. the usual end uated using nod" (version ncy for 6 %. As includes sling uch proven

Environmental indicators	Unit	XB5R			
		S = M + D + U	М	D	U
Raw Material Depletion	Y-1	1.97 . 10 ⁻¹⁵	1.97 . 10 ⁻¹⁵	9,4 .10 ⁻²¹	0
Energy Depletion	MJ	205	205	0,072	0
Water Depletion	dm ³	24.2	24.2	0,001	0
Global Warming	g≈CO ₂	11600	11600	0,542	0
Ozone Depletion	µg≈CFC-11	0.972	0.972	0,0002	0
Air Toxicity	m ³	1413000	1413000	175	0
Photochemical Ozone Creation	g≈C ₂ H ₄	6.6	6.6	5,9.10-4	0
Air Acidification	mg≈H⁺	978	978	0,12	0
Water Toxicity	m ³	2.4	2.4	4,7.10-5	0
Water Eutrophication	mg≈PO₄	90	90	0,005	0
Hazardous Waste Production	g	393	393	0,003	0

The life cycle assessment has been achieved with the EIME software (Environmental Impact and Management Explorer), version 4.0, and with its database, version 11.

The production phase is the life cycle phase which has the greatest impact on the majority of environmental indicators.

Product Environmental Profile - PEP

System approach	
	As the product of the range are designed in accordance with the RoHS Directive (European Directive 2002/95/EC of 27 January 2003), they can be incorporated without any restriction within an assembly or an installation submitted to this Directive.
Classer	N.B.: please note that the environmental impacts of the product depend on the use and installation conditions of the product. Impacts values given above are only valid within the context specified and cannot be directly used to draw up the environmental assessment of the installation.
Glossary	
Raw Material Depletion (RMD)	This indicator quantifies the consumption of raw materials during the life cycle of the product. It is expressed as the fraction of natural resources that disappear each year, with respect to all the annual reserves of the material.
Energy Depletion (ED)	This indicator gives the quantity of energy consumed, whether it be from fossil, hydroelectric, nuclear or other sources. This indicator takes into account the energy from the material produced during combustion. It is expressed in MJ.
Water Depletion (WD)	This indicator calculates the volume of water consumed, including drinking water and water from industrial sources. It is expressed in dm ³ .
Global Warming (GW)	The global warming of the planet is the result of the increase in the greenhouse effect due to the sunlight reflected by the earth's surface being absorbed by certain gases known as "greenhouse-effect" gases. The effect is quantified in gram equivalent of CO_2 .
Ozone Depletion (OD)	This indicator defines the contribution to the phenomenon of the disappearance of the stratospheric ozone layer due to the emission of certain specific gases. The effect is expressed in gram equivalent of CFC-11.
Photochemical Ozone Creation (POC)	This indicator quantifies the contribution to the "smog" phenomenon (the photochemical oxidation of certain gases which generates ozone) and is expressed in gram equivalent of ethylene (C_2H_4) .
Air Acidification (AA)	The acid substances present in the atmosphere are carried by rain. A high level of acidity in the rain can cause damage to forests. The contribution of acidification is calculated using the acidification potentials of the substances concerned and is expressed in mode equivalent of H^+ .
Hazardous Waste Production (HWP)	This indicator calculates the quantity of specially treated waste created during all the life cycle phases (manufacturing, distribution and utilization). For example, special industrial waste in the manufacturing phase, waste associated with the production of electrical power, etc. It is expressed in kg.

Published by: Schneider Electric

We are committed to safeguarding We are committed to sateguarding our planet by "Combining innovation and continuous improvement to meet the new environmental challenges". ISO 14020 which relates to the general principles of environmental .025 technical report relating to type III environmental declarations. Iles Drafting Guide version 12. data of this PEP cannot be directly compared with datas of ne same LCA rules.

Schneider Electric Industries SAS 35, rue Joseph Monier CS30323 F - 92506 Rueil Malmaison Cedex

RCS Nanterre 954 503 439 Capital social 896 313 776 € www.schneider-electric.com

This document is based on ISO 14020 which relates to the general principles of environmental declarations and the ISO 14025 technical report relating to type III environmental declarations. Product Environmental Profiles Drafting Guide version 12.

It has to be noticed that the data of this PEP cannot be directly compared with datas of programs which don't use the same LCA rules.